【題目】如圖,中,的平分線交于點,過點于點,交于點,那么下列結論:

是等腰三角形;②;

③若,;④

其中正確的有(  )

A.B.C.D.

【答案】B

【解析】

根據(jù)角平分線的定義和平行線的性質可得∠DBF =DFB,∠ECF=EFC,然后利用等角對等邊即可得出DB=DF,EF=EC,從而判斷①和②;利用三角形的內角和定理即可求出∠ABC+∠ACB,然后利用角平分線的定義和三角形的內角和定理即可求出∠BFC,從而判斷③;然后根據(jù)∠ABC不一定等于∠ACB即可判斷④.

解:∵的平分線交于點

∴∠DBF=FBC,∠ECF=FCB

∴∠DFB=FBC,∠EFC=FCB

∴∠DBF =DFB,∠ECF=EFC

DB=DFEF=EC,

是等腰三角形,故①正確;

DE=DFEF= BDCE,故②正確;

∵∠A=50°

∴∠ABC+∠ACB=180°-∠A=130°

∴∠FBC+∠FCB=(∠ABC+∠ACB=65°

∴∠BFC=180°-(∠FBC+∠FCB=115°,故③正確;

∵∠ABC不一定等于∠ACB

∴∠FBC不一定等于∠FCB

BF不一定等于CF,故④錯誤.

正確的有①②③,共3

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植4-7棵,活動結束后隨機抽查了若干名學生每人的植樹量,并分為四種類型,A4棵;B5棵;C6棵;D7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問題:

1)求這次抽查的學生數(shù);

2)補全圖甲和圖乙;

3)計算被抽查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.

1)求一次函數(shù)和正比例函數(shù)的表達式;

2)若點D是點C關于軸的對稱點,且過點D的直線DEACBOE求點E的坐標;

3)在坐標軸上是否存在一點,使.若存在請求出點的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.

(1)求證:PMN是等腰三角形;

(2)將ADE繞點A逆時針旋轉,

如圖2,當點D、E分別在邊AC兩側時,求證:PMN是等腰三角形;

ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個一次函數(shù)l1l2的圖象如圖:

(1)分別求出l1l2兩條直線的函數(shù)關系式;

(2)求出兩直線與y軸圍成的ABP的面積;

(3)觀察圖象:請直接寫出當x滿足什么條件時,l1的圖象在l2的下方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點到這個角兩邊的距離相等

B.角的內部到角的兩邊的距離相等的點在角的平分線上

C.三角形三條角平分線的交點到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點PB、C兩點距離之和最小時,∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtACB中,∠ACB90°ACBC,E點為射線CB上一動點,連結AE,作AFAEAFAE

1)如圖1,過F點作FDACACD點,求證:FDBC;

2)如圖2,連結BFACG點,若AG3,CG1,求證:E點為BC中點;

3)當E點在射線CB上,連結BF與直線AC交于G點,若BC4BE3,則   (直接寫出結果)

查看答案和解析>>

同步練習冊答案