如圖,平面直角坐標(biāo)系xOy中, Rt△AOB的直角邊OA在x軸的正半軸上,點(diǎn)B在第一象限,并且AB=3,OA=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90度得到△COD.點(diǎn)P從點(diǎn)C出發(fā)(不含點(diǎn)C),沿射線DC方向運(yùn)動(dòng),記過點(diǎn)D,P,B的拋物線的解析式為y=ax2+bx+c(a<0).

(1)直接寫出點(diǎn)D的坐標(biāo);

(2)在直線CD的上方是否存在一點(diǎn)Q,使得點(diǎn)D,O,P,Q四點(diǎn)構(gòu)成的四邊形是菱形,若存在,求出P與Q的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠DOP=45度時(shí),求拋物線的對(duì)稱軸;

(4)求代數(shù)式a+b+c的值的取值范圍(直接寫出答案即可).

 

【答案】

(1)D(-3;6);(2)P(3,6),Q(0,12);(3)x=;(4)

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合AB=3,OA=6即可得到結(jié)果;

(2)根據(jù)拋物線的對(duì)稱性及菱形的性質(zhì)求解即可;

(3)延長(zhǎng)AB交直線DP于點(diǎn)H,連接BP,設(shè)P,可證 ?DOP≌?BOP,即可得到PB=DP=x+3,在正方形OAHC中,PH=6-x,BH=3,根據(jù)勾股定理即可列方程求得x的值,從而得到結(jié)果;

(4)根據(jù)二次函數(shù)的圖象與系數(shù)的關(guān)系求解即可.

(1)由題意得D(-3;6);

(2)∵O(0,0),D(-3;6),點(diǎn)D,O,P,Q四點(diǎn)構(gòu)成的四邊形是菱形

∴P(3,6),Q(0,12)

(3)延長(zhǎng)AB交直線DP于點(diǎn)H,連接BP

設(shè)P,可證 ?DOP≌?BOP  

∴PB=DP=x+3

在正方形OAHC中,PH=6-x,BH="3"

∴CP=x=2

∴P(2,6))又D(-3,6)

∴對(duì)稱軸是直線x=.

(4)a+b+c>

考點(diǎn):二次函數(shù)的綜合題

點(diǎn)評(píng):二次函數(shù)的綜合題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點(diǎn)D作CD的垂線,過點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案