【題目】下列說法正確的是( )

A. 為了解蘇州市中學生的睡眠情況,應該采用普查的方式

B. 某種彩票的中獎機會是,則買張這種彩票一定會中獎

C. 一組數(shù)據(jù),,,的眾數(shù)和中位數(shù)都是

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

【答案】C

【解析】

根據(jù)抽樣抽查、概率的定義、中位數(shù)以及方差的定義進行判斷.

解:A、為了解蘇州市中學生的睡眠情況,應該采用抽樣調查的方式,故本選項錯誤;
B、某種彩票的中獎機會是1%,則買100張這種彩票中獎的可能性很大,但不是一定中獎,故本選項錯誤;
C、一組數(shù)據(jù)1,5,3,2,3,4,8的眾數(shù)和中位數(shù)都是3,故本選項正確;
D、方差反映了一組數(shù)據(jù)的波動情況,方差越小數(shù)據(jù)越穩(wěn)定,故本選項錯誤.
故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點GD,C在直線a上,點EFA,B在直線b上,若abRtGEF從如圖所示的位置出發(fā),沿直線b向右勻速運動,直到EGBC重合.運動過程中GEF與矩形ABCD重合部分的面積(S)隨時間(t)變化的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某種產品的進價為每件40元,現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調查發(fā)現(xiàn),該產品每降價1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設這種產品每件降價x元(x為整數(shù)),每星期的銷售利潤為w元.

(1)求w與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)該產品銷售價定為每件多少元時,每星期的銷售利潤最大?最大利潤是多少元?

(3)該產品銷售價在什么范圍時,每星期的銷售利潤不低于6000元,請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應售多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為5的⊙Py軸交于點M(0,﹣4),N(0,﹣10)

(1)求點P的坐標;

(2)將⊙P繞點O順時針方向旋轉90°后得⊙A,交x軸于B、C,求過A、B、C三個點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過y軸上一個動點Mx軸的平行線,交雙曲線y= 于點A,交雙曲線于點B,點C、點Dx軸上運動,且始終保持DCAB,則平行四邊形ABCD的面積是( 。

A. 7 B. 10 C. 14 D. 28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0)

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)該拋物線有一點Dx,y),使得SABCSDBC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,CA=CB,CDAB且與OA的延長線交與點D

(1)判斷CD與⊙O的位置關系并說明理由;

(2)若∠ACB=120°,OA=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,AB兩點的坐標分別為A(2,2),B(2,﹣2).對于給定的線段AB及點P,Q,給出如下定義:若點Q關于AB所在直線的對稱點Q′落在△ABP的內部(不含邊界),則稱點Q是點P關于線段AB的內稱點.

(1)已知點P(4,﹣1).

Q1(1,﹣1),Q2(1,1)兩點中,是點P關于線段AB的內稱點的是   ;

若點M在直線yx﹣1上,且點M是點P關于線段AB的內稱點,求點M的橫坐標xM的取值范圍;

(2)已知點C(3,3),⊙C的半徑為r,點D(4,0),若點E是點D關于線段AB的內稱點,且滿足直線DEC相切,求半徑r的取值范圍.

查看答案和解析>>

同步練習冊答案