精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一個工人拿一個米長的梯子,底端放在距離墻根米處,另一端點點靠墻.

1)求這個梯子的頂端距離地面的高度;

2)如圖,如果梯子的頂部下滑米,那么梯子的底部向外滑多少米.

【答案】12.4米;(20.8米.

【解析】

1)首先在直角三角形ABC中計算出CB長;
2)由題意可得EC長,再次在直角三角形EDC中計算出DC長,從而可得AD的長度.

1)∵AB=2.5米,AC=0.7米,
BC==2.4(米),
答:這個梯子的頂端距離地面的高度BC2.4米;
2)∵梯子的頂部下滑0.4米,
BE=0.4米,
EC=BC-0.4=2米,
DC= =1.5米.
∴梯子的底部向外滑出AD=1.5-0.7=0.8(米).
答:梯子的底部向外滑0.8米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】有一類隨機事件概率的計算方法:設試驗結果落在某個區(qū)域S中的每一點的機會均等,用A表示事件試驗結果落在S中的一個小區(qū)域M,那么事件A發(fā)生的概率P(A)=有一塊邊長為30cm的正方形ABCD飛鏢游戲板,假設飛鏢投在游戲板上的每一點的機會均等.求下列事件發(fā)生的概率:

(1)在飛鏢游戲板上畫有半徑為5cm的一個圓(如圖1),求飛鏢落在圓內的概率;

(2)飛鏢在游戲板上的落點記為點O,求△OAB為鈍角三角形的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】丹尼斯超市進了一批成本為 8 /個的文具盒. 調查發(fā)現:這種文具盒每個星期的銷售量y()與它的定價 x(/)的關系如圖所示:

(1)求這種文具盒每個星期的銷售量 y()與它的定價 x(/)之間的函數關系式(不必寫出自變量 x的取值范圍);

(2)每個文具盒的定價是多少元,超市每星期銷售這種文具盒 (不考慮其他因素)可或得的利潤為 1200 ?

(3)若該超市每星期銷售這種文具盒的銷售量小于 115 個, 且單件利潤不低于 4 (x 為整數),當每個文具盒定價多少 元時,超市每星期利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解學生對新聞、體育、娛樂、動畫四類電視節(jié)目的喜愛情況,進行了統(tǒng)計調查隨機調查了某班所有同學最喜歡的節(jié)目每名學生必選且只能選擇四類節(jié)目中的一類并將調查結果繪成如下不完整的統(tǒng)計圖根據兩圖提供的信息,回答下列問題:

最喜歡娛樂類節(jié)目的有______人,圖中______;

請補全條形統(tǒng)計圖;

根據抽樣調查結果,若該校有1800名學生,請你估計該校有多少名學生最喜歡娛樂類節(jié)目;

在全班同學中,有甲、乙、丙、丁等同學最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學中選取2人參加學校組織的體育知識競賽,請用列表法或樹狀圖求同時選中甲、乙兩同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PEPB,連接PDOAC中點.

(1)如圖1,當點P在線段AO上時,試猜想PEPD的數量關系和位置關系,請說明理由;

(2)①如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;

②如圖2,試用等式來表示PB,BC,CE之間的數量關系,并證明.

(3)如圖3,把正方形ABCD改為菱形ABCD,其他條件不變,當時,連接DE,試探究線段PB與線段DE的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角坐標系中(,,三點在正方形網格的交點上)按如圖所示的方式放置,請解答下列問題:

1,,三點的坐標分別為:_________________________,____________;

2點關于軸對稱的點為點,則點的坐標為______________

點關于軸對稱的點為點,則點的坐標為____________;

將點向下移動得到點,若直線軸,則點的坐標為______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CDAB于點D

(1)求證:AC2ADAB

(2)求證:AC2+BC2AB2(即證明勾股定理);

(3)如果AC=4,BC=9,求ADDB的值;

(4)如果AD=4,DB=9,求ACBC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=8AD=6,折疊紙片使AD邊與對角線BD重合,折痕為DG,則線段A'B的長度為____,折痕DG的長度為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.

(1)若直線經過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

同步練習冊答案