如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若△PBQ的面積為18cm2,求運動時間;
(3)求△PBQ的面積的最大值.
分析:(1)分別表示出PB、BQ的長,然后根據(jù)三角形的面積公式列式整理即可得解;
(2)利用一元二次方程的解法得出即可;
(3)把函數(shù)關(guān)系式整理成頂點式解析式,然后根據(jù)二次函數(shù)的最值問題解答.
解答:解:(1)∵S△PBQ=
1
2
PB•BQ,PB=AB-AP=18-2x,BQ=x,
∴y=
1
2
(18-2x)x,
即y=-x2+9x(0<x≤4);       

(2)由題意得出:18=-x2+9x,
解得:x1=3,x2=6,
∵0<x≤4,
∴x=3,
∴△PBQ的面積為18cm2,運動時間為3秒;

(3)由(1)知:y=-x2+9x,
∴y=-(x-
9
2
2+
81
4
,
∵當0<x≤
9
2
時,y隨x的增大而增大,
而0<x≤4,
∴當x=4時,y最大值=20,
即△PBQ的最大面積是20cm2
點評:本題考查了矩形的性質(zhì),二次函數(shù)的最值問題,根據(jù)題意表示出PB、BQ的長度是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線AC和BD相交于點O,過點O的直線分別交AD和BC于點E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=
kx
的圖象上,若點A的坐標為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對角線AC、BD交于點E,過B點的雙曲線y=
kx
(x>0)
恰好經(jīng)過點E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對角線交于點O,∠BOC=60°,AD=3,動點P從點A出發(fā),沿折線AD-DO以每秒1個單位長的速度運動到點O停止.設(shè)運動時間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的對角線交于O點,∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案