精英家教網 > 初中數學 > 題目詳情
如圖,在⊙O中,弦AB∥CD,若∠ABC=40°,則∠BOD=( )

A.20°
B.40°
C.50°
D.80°
【答案】分析:先根據弦AB∥CD得出∠ABC=∠BCD,再根據∠ABC=40°即可得出∠BOD的度數.
解答:解:∵弦AB∥CD,
∴∠ABC=∠BCD,
∴∠BOD=2∠ABC=2×40°=80°.
故選D.
點評:本題考查的是圓周角定理及平行線的性質,根據題意得到∠ABC=∠BCD,是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網標系.
(1)求圓心M的坐標;
(2)求經過A,B,C三點的拋物線的解析式;
(3)設點P是⊙M上的一個動點,當△PAB為Rt△PAB時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習冊答案