如圖①,四邊形ABCD是正方形,點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
(1)求證:DE-BF=EF;
(2)當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí),試探究線段EF與GF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若點(diǎn)G為CB延長(zhǎng)線上一點(diǎn),其余條件不變.請(qǐng)你在圖②中畫(huà)出圖形,寫(xiě)出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

【答案】分析:(1)本題的關(guān)鍵是求三角形ADE和ABF全等,以此來(lái)得出DE=AF=AE+EF=BE+EF,這兩個(gè)三角形中已知的條件有AD=BA,一組直角,關(guān)鍵是再找出一組對(duì)應(yīng)角相等,可通過(guò)證明∠DAF和∠ABF來(lái)實(shí)現(xiàn).(通過(guò)平行和等角的余角相等來(lái)證得)
(2)可通過(guò)證明三角形ABG、ABF、BFG相似來(lái)得出AB,BG;AF,BF;BF,BG之間的比例關(guān)系,根據(jù)AB=2BG,來(lái)得出AF,BF,BF,F(xiàn)G之間的比例關(guān)系,然后根據(jù)(1)中得出的結(jié)果來(lái)求BF,F(xiàn)G的大小關(guān)系.
(3)方法同(1)還是正三角形ADE和ABF全等,得出DE=AF,BF=AE,只不過(guò)本題的結(jié)論是DE+BF=EF.
解答:(1)證明:∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∴△ABF≌△DAE,
∴BF=AE,AF=DE,
∴DE-BF=AF-AE=EF.

(2)解:EF=2FG,
理由如下:
∵AB⊥BC,BF⊥AG,AB=2BG,
∵∠BAG=∠GBF,
∴△ABG∽△BFG,
同理可得,△AFB∽△BFG∽△ABG,
===2,
∴AF=2BF,BF=2FG,
由(1)知,AE=BF,
∴EF=AF-AE=AF-BF=BF=2FG.

(3)解:如圖,DE+BF=EF.
點(diǎn)評(píng):本題中通過(guò)全等三角形得出簡(jiǎn)單的線段相等以及利用相似三角形的對(duì)應(yīng)邊成比例是解題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(3)設(shè)四邊形DECF的面積為S,x在什么范圍時(shí)s隨x增大而增大.x在什么范圍時(shí)s隨x增大而減小,并畫(huà)出s與x圖象;
(4)求出x為何值時(shí),面積s最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點(diǎn)G,下列4個(gè)結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案