【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為______(請將所有正確的序號都填上).
【答案】①③④
【解析】試題分析:根據(jù)已知先判斷△ABC≌△EFA,則∠AEF=∠BAC,得出EF⊥AC,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形而不是菱形,根據(jù)平行四邊形的性質(zhì)得出AD=4AG,從而得到答案.
解:∵△ACE是等邊三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F為AB的中點,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB,
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正確,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中點,
∴HF=BC,
∵BC=AB,AB=BD,
∴HF=BD,故④說法正確;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),
∴AE=DF,
∵FE=AB,
∴四邊形ADFE為平行四邊形,
∵AE≠EF,
∴四邊形ADFE不是菱形;
故②說法不正確;
∴AG=AF,
∴AG=AB,
∵AD=AB,
則AD=4AG,故③說法正確,
故答案為:①③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.
(1)判斷AG與⊙O的位置關(guān)系,并說明理由.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個點到圓的最小距離為4cm,最大距離為9cm,則該圓的半徑是( )
A. 2.5 cm或6.5 cm
B. 2.5 cm
C. 6.5 cm
D. 5 cm或13cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)分組,若每組7人,則有2人分不到組里;若每組8人,則最后一組差4人,若設(shè)計劃分x組,則可列方程為 ( )
A. 7x + 2 = 8x - 4 B. 7x - 2 = 8x + 4
C. 7x + 2 = 8x + 4 D. 7x - 2 = 8x - 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑均為個單位長度的半圓, , …….組成一條平滑的曲線,點從原點出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第時,點的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com