如圖1,在正方形ABCD中,點(diǎn)E為BC上一點(diǎn),連接DE,把△DEC沿DE
折疊得到△DEF,延長(zhǎng)EF交AB于G,連接DG.
(1) 求證:∠EDG=45°.
(2) 如圖2,E為BC的中點(diǎn),連接BF.
①求證:BF∥DE;
②若正方形邊長(zhǎng)為6,求線段AG的長(zhǎng).
(3) 當(dāng)BE︰EC= 時(shí),DE=DG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
將一張長(zhǎng)方形紙片按照?qǐng)D示的方式進(jìn)行折疊:
①翻折紙片,使A與DC邊的中點(diǎn)M重合,折痕為EF;
②翻折紙片,使C落在ME上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為H,折痕為MG;
③翻折紙片,使B落在ME上,點(diǎn)B的對(duì)應(yīng)點(diǎn)恰與H重合,折痕為GE.
根據(jù)上述過程,長(zhǎng)方形紙片的長(zhǎng)寬之比= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng).如果點(diǎn)E、F同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s)當(dāng)t= s時(shí),以A、C、E、F為頂點(diǎn)四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列命題正確的是( 。
A、垂直于半徑的直線一定是圓的切線
B、正三角形繞其中心旋轉(zhuǎn)180°后能與原圖形重合是必然事件
C、有一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形
D、四個(gè)角都是直角的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與F、G不重合),作PQ∥y軸與拋物線交于點(diǎn)Q.
(1)若經(jīng)過B、E、C三點(diǎn)的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b=_____,c=_____(直接填空)
(2)①以P、D、E為頂點(diǎn)的三角形是直角三角形,則點(diǎn)P的坐標(biāo)為_____(直接填空)
②若拋物線頂點(diǎn)為N,又PE+PN的值最小時(shí),求相應(yīng)點(diǎn)P的坐標(biāo).
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com