【題目】如圖,OAOB,ABx軸于C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)在x軸上存在一點(diǎn)P,使SAOP= SAOB求點(diǎn)P的坐標(biāo).

【答案】(1);(2)(﹣2,0),或(2,0)

【解析】試題分析:(1)把A的坐標(biāo)代入反比例函數(shù)的解析式,即可求出答案;

(2)求出∠A=60°,∠B=30°,求出線段OAOB,求出△AOB的面積,根據(jù)已知SAOPSAOB,求出OP長(zhǎng),即可求出答案.

試題解析:

(1)解:把A( ,1)代入反比例函數(shù)y 得:k ,

所以反比例函數(shù)的表達(dá)式為y

(2)解:∵A,1),OAABABx軸于C,

OC AC1,

OA 2,

tanA ,

∴∠A60°,

OAOB,

∴∠AOB90°,

∴∠B30°,

OB2OC﹣2 ,

SAOB 2 ,

SAOP SAOB ,

,

AC1,OP2

∴點(diǎn)P的坐標(biāo)為(﹣2 ,0),或(2 ,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定在網(wǎng)格內(nèi)的某點(diǎn)進(jìn)行一定條件操作到達(dá)目標(biāo)點(diǎn):H代表所有的水平移動(dòng),H1代表向右水平移動(dòng)1個(gè)單位長(zhǎng)度,H-1代表向左平移1個(gè)單位長(zhǎng)度;S代表上下移動(dòng),S1代表向上移動(dòng)1個(gè)單位長(zhǎng)度,S-1代表向下移動(dòng)1個(gè)單位長(zhǎng)度,表示點(diǎn)P在網(wǎng)格內(nèi)先一次性水平移動(dòng),在此基礎(chǔ)上再一次性上下移動(dòng);表示點(diǎn)P在網(wǎng)格內(nèi)先一次性上下移動(dòng),在此基礎(chǔ)上再一次性水平移動(dòng).

1)如圖,在網(wǎng)格中標(biāo)出移動(dòng)后所到達(dá)的目標(biāo)點(diǎn)

2)如圖,在網(wǎng)格中的點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,寫出點(diǎn)B的移動(dòng)方法________________;

3)如圖,在網(wǎng)格內(nèi)有格點(diǎn)線段AC,現(xiàn)需要由點(diǎn)A出發(fā),到達(dá)目標(biāo)點(diǎn)D,使得A、C、D三點(diǎn)構(gòu)成的格點(diǎn)三角形是等腰直角三角形,在圖中標(biāo)出所有符合條件的點(diǎn)D的位置并寫出點(diǎn)A的移動(dòng)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸交于點(diǎn)A(﹣1,0)、B(3,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸為直線x=1,有下列四個(gè)判斷:

①關(guān)于x的一元二次方程ax2+bx+c=0的兩個(gè)根分別是x1=﹣1,x2=3;

a﹣b+c=0;

③若拋物線上有三個(gè)點(diǎn)分別為(﹣2,y1)、(1,y2)、(2,y3),則y1<y2<y3;

④當(dāng)OC=3時(shí),點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),則△PCA的周長(zhǎng)的最小值是

上述四個(gè)判斷中正確的 有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】企業(yè)的污水處理有兩種方式:一種是輸送到污水廠進(jìn)行集中處理,另一種是通過(guò)企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時(shí)進(jìn)行.16月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:

 月份x(月)

 1

 2

3

 4

5

6

 輸送的污水量y1(噸)

 12000

 6000

 4000

 3000

 2400

2000

712月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.16月,污水廠處理每噸污水的費(fèi)用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=x,該企業(yè)自身處理每噸污水的費(fèi)用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=x﹣x2;712月,污水廠處理每噸污水的費(fèi)用均為2元,該企業(yè)自身處理每噸污水的費(fèi)用均為1.5元.

(1)請(qǐng)觀察題中的表格和圖象,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),分別直接寫出y1,y2x之間的函數(shù)關(guān)系式;

(2)請(qǐng)你求出該企業(yè)去年哪個(gè)月用于污水處理的費(fèi)用W(元)最多,并求出這個(gè)最多費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無(wú)滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過(guò)2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(0,3)、B(1,0),其對(duì)稱軸為直線l:x=2,過(guò)點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對(duì)稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD的對(duì)角線交于點(diǎn)O,已知OBC的周長(zhǎng)為59厘米,且AD的長(zhǎng)是28厘米,兩對(duì)角線的差為14厘米,那么較長(zhǎng)的一條對(duì)角線長(zhǎng)是______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線yx軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO上.將CBO沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.

1)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo):

2)求AC的長(zhǎng);

3)點(diǎn)P為平面內(nèi)一動(dòng)點(diǎn),且滿足以A、B、C、P為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接回答:

①符合要求的P點(diǎn)有幾個(gè)?

②寫出一個(gè)符合要求的P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案