【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒(x>0).
(1)當(dāng)x= 秒時(shí),點(diǎn)P到達(dá)點(diǎn)A;
(2)運(yùn)動(dòng)過(guò)程中點(diǎn)P表示的數(shù)是 (用含x的代數(shù)式表示);
(3)當(dāng)P,C之間的距離為2個(gè)單位長(zhǎng)度時(shí),求x的值.
【答案】(1)5;(2)2x﹣4;(3)x=1.5或3.5.
【解析】
(1)直接得出AB的長(zhǎng),進(jìn)而利用P點(diǎn)運(yùn)動(dòng)速度得出答案;
(2)根據(jù)題意得出P點(diǎn)運(yùn)動(dòng)的距離減去4即可得出答案;
(3)利用當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)P左側(cè)2個(gè)單位長(zhǎng)度時(shí),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)P右側(cè)2個(gè)單位長(zhǎng)度時(shí),分別得出答案.
(1)∵數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,
∴AB=10,
∵動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),
∴運(yùn)動(dòng)時(shí)間為10÷2=5(秒),
故答案為:5;
(2)∵動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),
∴運(yùn)動(dòng)過(guò)程中點(diǎn)P表示的數(shù)是:2x﹣4;
故答案為:2x﹣4;
(3)點(diǎn)C表示的數(shù)為:[6+(﹣4)]÷2=1,
當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)P左側(cè)2個(gè)單位長(zhǎng)度時(shí),
2x﹣4=1﹣2
解得:x=1.5,
當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)P右側(cè)2個(gè)單位長(zhǎng)度時(shí),
2x﹣4=1+2
解得:x=3.5
綜上所述,x=1.5或3.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4)兩點(diǎn).
(1)求拋物線的解析式;
(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與x軸、軸分別交于點(diǎn)A、B,且BC∥AO,梯形AOBC的面積為10.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)求直線AC的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點(diǎn),當(dāng)∠BPC=30°時(shí),CP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線OA∥射線CB,∠C=∠OAB=100°.點(diǎn)D、E在線段CB上,且∠DOB=∠BOA,OE平分∠DOC.
(1)試說(shuō)明AB∥OC的理由;
(2)試求∠BOE的度數(shù);
(3)平移線段AB;
①試問(wèn)∠OBC:∠ODC的值是否會(huì)發(fā)生變化?若不會(huì),請(qǐng)求出這個(gè)比值;若會(huì),請(qǐng)找出相應(yīng)變化規(guī)律.
②若在平移過(guò)程中存在某種情況使得∠OEC=∠OBA,試求此時(shí)∠OEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明設(shè)計(jì)了一個(gè)問(wèn)題,分兩步完成:
(1)已知關(guān)于x的一元一次方程,請(qǐng)畫出數(shù)軸,并在數(shù)軸上標(biāo)注a與對(duì)應(yīng)的點(diǎn),分別記作A,B;
(2)在第1問(wèn)的條件下,在數(shù)軸上另有一點(diǎn)C對(duì)應(yīng)的數(shù)為y,C與A的距離是C與B的距離的5倍,且C在表示5的點(diǎn)的左側(cè),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD∶AB=__________時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com