【題目】如圖,和是的半徑,并且,是上任一點(diǎn),的延長(zhǎng)線交于點(diǎn),過點(diǎn)的的切線交延長(zhǎng)線于點(diǎn).
求證:;
若,試求的長(zhǎng).
【答案】(1)證明見解析; (2).
【解析】
(1)要證明RP=RQ,需要證明∠PQR=∠RPQ,連接OQ,則∠OQR=90°;根據(jù)OB=OQ,得∠B=∠OQB,再根據(jù)等角的余角相等即可證明;
(2)延長(zhǎng)AO交圓于點(diǎn)C,首先根據(jù)勾股定理求得BP的長(zhǎng),再根據(jù)相交弦定理求得QP的長(zhǎng)即可.
(1)證法一:
連接OQ.
∵RQ是⊙O的切線,∴∠OQB+∠BQR=90°.
∵OA⊥OB,∴∠OPB+∠B=90°.
又∵OB=OQ,∴∠OQB=∠B,∴∠PQR=∠BPO=∠RPQ,∴RP=RQ.
證法二:
作直徑BC,連接CQ.
∵BC是⊙O的直徑,∴∠B+∠C=90°.
∵OA⊥OB,∴∠B+∠BPO=90°,∴∠C=∠BPO.
又∵∠BPO=∠RPQ,∴∠C=∠RPQ.
又∵RQ為⊙O的切線,∴∠PQR=∠C,∴∠PQR=∠RPQ,∴RP=RQ.
(2)解法一:
作直徑AC.
∵OP=PA=1,∴PC=3.
由勾股定理,得:BP==.
由相交弦定理,得:PQPB=PAPC,即PQ×=1×3,∴PQ=.
解法二:
作直徑AE,過R作RF⊥BQ,垂足為F,設(shè)RQ=RP=x;
由切割線定理,得:x2=(x﹣1)(x+3)
解得:x=.
∵∠BOP=∠RFP=90°,∠BPO=∠RPF,∴△BPO∽△RPF,∴,∴PF=,由等腰三角形性質(zhì)得:PQ=2PF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+m過點(diǎn)A(5,—2)且分別與x軸、y軸交于點(diǎn)B、C,過點(diǎn)A畫AD//x軸,交y軸于點(diǎn)D.
(1)求點(diǎn)B、C的坐標(biāo);
(2)在線段AD上存在點(diǎn)P,使BP+ CP最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)40°,得到平行四邊形AB′C′D′,若點(diǎn)B′恰好落在BC邊上,則∠DC′B′的度數(shù)為( )
A. 60° B. 65° C. 70° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)投入13 800元資金購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:
類別/單價(jià) | 成本價(jià) | 銷售價(jià)(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由6個(gè)大小相同的小正方形組成的方格中,設(shè)每個(gè)小正方形的邊長(zhǎng)均為1.
(1)如圖①,,,是三個(gè)格點(diǎn)(即小正方形的頂點(diǎn)),判斷與的位置關(guān)系,并說明理由;
(2)如圖②,連接三格和兩格的對(duì)角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在ABC中,,BC=9cm, AC=12cm, AB=15cm.現(xiàn)有一動(dòng)點(diǎn)P,從點(diǎn)A出發(fā),沿著三角形的邊ACCBBA運(yùn)動(dòng),回到點(diǎn)A停止,速度為3cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)如圖(1),當(dāng)t=______時(shí),△APC的面積等于△ABC面積的一半;
(2)如圖(2),在△DEF中,,DE=4cm, DF=5cm, . 在△ABC的邊上,若另外有一個(gè)動(dòng)點(diǎn)Q,與點(diǎn)P同時(shí)從點(diǎn)A出發(fā),沿著ABBCCA運(yùn)動(dòng),回到點(diǎn)A停止.在兩點(diǎn)運(yùn)動(dòng)過程中的某一時(shí)刻,恰好,求點(diǎn)Q的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表
根據(jù)以上信息完成下列問題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從某校八年級(jí)隨機(jī)抽取若干名學(xué)生進(jìn)行體能測(cè)試,成績(jī)記為1分,2分,3分,4分四個(gè)等級(jí),將調(diào)查結(jié)果繪制成如下的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中信息.
(1)求共抽取多少名學(xué)生;
(2)求抽取的所有學(xué)生成績(jī)的眾數(shù),中位數(shù);
(3)求抽取的所有學(xué)生成績(jī)的平均數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com