【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地。如圖,線段OA表示貨車離甲地的距離(km)與時(shí)間(h)之間的函數(shù)關(guān)系,折線BCDE變式轎車離甲地的距離(km)與時(shí)間(h)之間的函數(shù)關(guān)系。根據(jù)圖像,解答下列問(wèn)題:
(1)線段CD表示轎車在途中停留了 h.
(2)求線段DE對(duì)應(yīng)的函數(shù)關(guān)系式(2.5≤x≤4.5).
(3)求轎車從甲地出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間追上貨車.
【答案】(1)0.5;(2);(3)2.9
【解析】
(1)利用圖象得出CD這段時(shí)間為2.5-2=0.5,得出答案即可;
(2)利用D點(diǎn)坐標(biāo)為:(2.5,80),E點(diǎn)坐標(biāo)為:(4.5,300),求出函數(shù)解析式即可;
(3)利用OA的解析式得出,當(dāng)60x=110x-195時(shí),即可求出轎車追上貨車的時(shí)間.
解:(1)利用圖象可得:線段CD表示轎車在途中停留了:2.5-2=0.5小時(shí);
(2)根據(jù)D點(diǎn)坐標(biāo)為:(2.5,80),E點(diǎn)坐標(biāo)為:(4.5,300),
代入y=kx+b,得:
,
解得:,
故線段DE對(duì)應(yīng)的函數(shù)解析式為:y=110x-195(2.5≤x≤4.5);
(3)∵A點(diǎn)坐標(biāo)為:(5,300),
代入解析式y=ax得,
300=5a,
解得:a=60,
故y=60x,當(dāng)60x=110x-195,
解得:x=3.9,故3.9-1=2.9(小時(shí)),
答:轎車從甲地出發(fā)后經(jīng)過(guò)2.9小時(shí)追上貨車.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于任何數(shù)a,符號(hào)[a]表示不大于a的最大整數(shù).
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣]= ;
(2)如果[a]=3,那么a的取值范圍是 ;
(3)如果[]=﹣3,求滿足條件的所有整數(shù)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:用3輛A型車和2輛B型車載滿貨物一次可運(yùn)貨共19噸;用2輛A型車和3輛B型車載滿貨物一次可運(yùn)貨共21噸.
(1)1輛A型車和1輛B型車都載滿貨物一次分別可以運(yùn)貨多少噸?
(2)某物流公司現(xiàn)有49噸貨物,計(jì)劃同時(shí)租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都載滿貨物.
①求、的值;
②若A型車每輛需租金130元/次,B型車每輛需租金200元/次.請(qǐng)求出租車費(fèi)用最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo)及△ACM的最小周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和25,則△EDF的面積為( )
A. 35B. 25C. 15D. 12.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△DEF中,DE=DF,點(diǎn)B在EF邊上,且∠EBD=60°,C是射線BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當(dāng)點(diǎn)C在線段BD上時(shí),
①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫出線段AE與BF的數(shù)量關(guān)系為________;
②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;
(2)當(dāng)點(diǎn)C在線段BD的延長(zhǎng)線上時(shí),用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com