已知直角三角形ABC的一條直角邊AB=12cm,另一條直角邊BC="5" cm,則以AB為軸旋轉(zhuǎn)一周,所得到的圓錐的表面積是
A.B.C.D.
A。
以AB為軸旋轉(zhuǎn)一周,所得到的圓錐的表面積是以BC為底半徑AC為高AB為母線的圓錐,
根據(jù)勾股定理,得AB=13。
∴圓錐的表面積=側(cè)面積+底面積。故選A。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的弦,OC⊥AB于點C,連接OA、OB.點P是半徑OB上任意一點,連接AP.若OA=5cm,OC=3cm,則AP的長度可能是   cm(寫出一個符合條件的數(shù)值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,且AB=8,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是     .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為5,弦AB=8,OC⊥AB于C,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在一個圓中,給出下列命題,其中正確的是
A.若圓心到兩條直線的距離都等于圓的半徑,則這兩條直線不可能垂直
B.若圓心到兩條直線的距離都小于圓的半徑,則這兩條直線與圓一定有4個公共點 
C.若兩條弦所在直線不平行,則這兩條弦可能在圓內(nèi)有公共點 
D.若兩條弦平行,則這兩條弦之間的距離一定小于圓的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

若⊙O1和⊙O2的圓心距為4,兩圓半徑分別為r1、r2,且r1、r2是方程組的解,求r1、r2的值,并判斷兩圓的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠BAC= Rt∠,AB=AC=2,以AB為直徑的⊙O交BC于D,

(1)求證:點D平分弧AB;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是
A.平分弦的直徑垂直于弦B.半圓(或直徑)所對的圓周角是直角
C.相等的圓心角所對的弧相等D.若兩個圓有公共點,則這兩個圓相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關(guān)系是(   ).
A.相切B.相離C.相交D.相切或相交

查看答案和解析>>

同步練習冊答案