【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AG·AB=12,求AC的長(zhǎng);(3)在滿足(2)的條件下,若AF∶FD=1∶2,GF=1,求⊙O的半徑及sin∠ACE的值.
【答案】(1)詳見解析;(2);(3).
【解析】分析:(1)根據(jù)圓周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°進(jìn)而得出答案;
(2)首先得出△CAG∽△BAC,進(jìn)而得出,求出AC即可;
(3)先求出AF的長(zhǎng),根據(jù)勾股定理得:,即可得出sin∠ADB= ,利用∠ACE=∠ACB=∠ADB,求出即可.
本題解析:(1)證明:連接CD,
∵AD是⊙O的直徑,∴∠ACD=90° ∴∠CAD+∠ADC=90°。
又∵∠PAC=∠PBA,∠ADC=∠PBA, ∴∠PAC=∠ADC。∴∠CAD+∠PAC=90° ∴PA⊥OA。
又∵AD是⊙O的直徑,∴PA是⊙O的切線。
(2)由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA。∴∠GCA=∠PAC。
又∵∠PAC=∠PBA,∴∠GCA=∠PBA。
又∵∠CAG=∠BAC,∴△CAG∽△BAC。 ∴,即AC2=AGAB。
∵AGAB=12,∴AC2=48。∴AC=。
(3)設(shè)AF=x, ∵AF:FD=1:2,∴FD=2x。∴AD=AF+FD=3x。
在Rt△ACD中,∵CF⊥AD,∴AC2=AFAD,即3x2=48。
解得;x=4。 ∴AF=4,AD=12。∴⊙O半徑為6。
在Rt△AFG中,∵AF=4,GF=2,
∴根據(jù)勾股定理得:
由(2)知,AGAB=48
連接BD,∵AD是⊙O的直徑,∴∠ABD=90°。
在Rt△ABD中,∵sin∠ADB= ,AD=12,∴sin∠ADB= 。
∵∠ACE=∠ACB=∠ADB,∴sin∠ACE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對(duì)空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購(gòu)進(jìn)了A,B兩種型號(hào)的空氣凈化器,已知一臺(tái)A型空氣凈化器的進(jìn)價(jià)比一臺(tái)B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)A型空氣凈化器和用6000元購(gòu)進(jìn)B型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)A型空氣凈化器和一臺(tái)B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷售過程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對(duì)B型空氣凈化器進(jìn)行降價(jià)銷售,經(jīng)市場(chǎng)調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),如果每天商社電器銷售B型空氣凈化器的利潤(rùn)為3200元,請(qǐng)問商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)-23+ (2 018+3)0-; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m).他打算將臥室鋪上木地板,其余部分鋪上地磚.
(1)木地板和地磚分別需要多少平方米?
(2)如果地磚的價(jià)格為每平方米x元,木地板的價(jià)格為每平方米3x元,那么王老師需要花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=mx2-(m+5)x+5.
(1)求證:它的圖象與x軸必有交點(diǎn),且過x軸上一定點(diǎn);
(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,過(1) 中定點(diǎn)的直線L;y=x+k交y軸于點(diǎn)D,且AB=4,圓心在直線L上的⊙M為A、B兩點(diǎn),求拋物線和直線的關(guān)系式,弦AB與弧圍成的弓形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠B <∠C,AD,AE分別是△ABC的高和角平分線。
(1)若∠B=30°,∠C=50°,試確定∠DAE的度數(shù);
(2)試寫出∠DAE,∠B,∠C的數(shù)量關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀再解答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實(shí)際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖①的面積關(guān)系來說明.
(1)根據(jù)圖②寫出一個(gè)等式: ;
(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請(qǐng)你畫出一個(gè)相應(yīng)的幾何圖形加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L;y=ax2+bx+c(其中a、b、c都不等于0), 它的頂點(diǎn)P的坐標(biāo)是,與y軸的交點(diǎn)是M(0,c)我們稱以M為頂點(diǎn),對(duì)稱軸是y軸且過點(diǎn)P的拋物線為拋物線L的伴隨拋物線,直線PM為L的伴隨直線.
(1)請(qǐng)直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的關(guān)系式:
伴隨拋物線的關(guān)系式_________________
伴隨直線的關(guān)系式___________________
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3, 則這條拋物線的關(guān)系是___________:
(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴隨拋物線和伴隨直線的關(guān)系式;
(4)若拋物線L與x軸交于A(x1,0),B(x2,0)兩點(diǎn)x2>x1>0,它的伴隨拋物線與x 軸交于C,D兩點(diǎn),且AB=CD,請(qǐng)求出a、b、c應(yīng)滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,D、E是△ABC中BC邊上的兩點(diǎn),AD=AE,要證明△ABE≌△ACD,應(yīng)該再增加一個(gè)什么條件?請(qǐng)你增加這個(gè)條件后再給予證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com