【題目】如圖,在矩形ABCD中,,點E是邊BC的中點動點P從點A出發(fā),沿著AB運動到點B停止,速度為每秒鐘1個單位長度,連接PE,過點EPE的垂線交射線AD與點Q,連接PQ,設(shè)點P的運動時間為t秒.

時,______;

是否存在這樣的t值,使為等腰直角三角形?若存在,求出相應(yīng)的t值,若不存在,請說明理由;

t為何值時,的面積等于10?

【答案】1;(2)存在,,見解析;(3

【解析】

1)由題意得出AP1BP3,BECE1,利用勾股定理求得PE,根據(jù)正弦函數(shù)的定義可得答案;

2)證△BPE∽△CEF ,據(jù)此求得CF ,DF ,再證△ECF∽△QDF ,據(jù)此求得DQ154t,AQ174t,根據(jù)△APQ為等腰直角三角形列方程求解可得答案;

3)根據(jù)SPEQS直角梯形ABEQSAPQSBPE2t216t+34及△PEQ的面積等于10列方程求解可得.

解:根據(jù)題意知,當時,,

,

,點E是邊BC的中點,

,

中,

故答案為:;

存在,

如圖,記QECD的交點為F,

由題意知,

四邊形ABCD是矩形,,

,,

,

,

,

,

,

,即,

,

,

,,

,

,即,

,

,

為等腰直角三角形,

,即,

解得,

故當時,為等腰直角三角形.

由題意知,

解得

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家步行到校車站臺,等候坐校車去學(xué)校,圖中的折線表示這一過程中小明的路程S(km)與所花時間t(min)間的函數(shù)關(guān)系;下列說法:①他步行了1km到校車站臺;②他步行的速度是100m/min;③他在校車站臺等了6min;④校車運行的速度是200m/min;其中正確的個數(shù)是( )個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)揚州市某風(fēng)景區(qū)的旅游信息,公司組織一批員工到該風(fēng)景區(qū)旅游,支付給旅行社. 公司參加這次旅游的員工有多少人?

揚州市某風(fēng)景區(qū)旅游信息表

旅游人數(shù)

收費標準

不超過

人均收費

超過

每增加人,人均收費降低元,但人均收費不低于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,以AC為邊在ABC外作等邊ACD,BC=AD=,tanACB=,則線段BD的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與雙曲線交于點A,過點AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為 1 的網(wǎng)格中,點 A、B、C 均在格點上,BC 與網(wǎng)格交于點 P,(1ABC 的面積等于______;(2)在 AC 邊上有一點 Q,當 PQ 平分ABC 的面積時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出 PQ,并簡要說明點 Q 的位置是如何找到的(不要求證明)_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共4個,某學(xué)習(xí)小組進行摸球試驗,將球攪勻后從中隨機摸出一個球記下顏色,再放回,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

33

60

130

202

251

摸到黑球的頻率

n很大時,估計從袋中摸出一個黑球的概率是______

試估算口袋中白球有______個;

的條件下,若從中先換出一球,不放回,搖勻后再摸出一球,請用列表或樹狀圖的方法求兩次都摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點NCD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點C落在AD邊上的點M處,折痕為PE,此時PD=3.

(1)求MP的值;

(2)在AB邊上有一個動點F,且不與點A,B重合.當AF等于多少時,MEF的周長最?

(3)若點G,Q是AB邊上的兩個動點,且不與點A,B重合,GQ=2.當四邊形MEQG的周長最小時,求最小周長值.(計算結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案