【題目】如圖,把長(zhǎng)方形紙片ABCD折疊,使頂點(diǎn)A與頂點(diǎn)C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長(zhǎng)的正方形面積( 。

A. 11 B. 10 C. 9 D. 16

【答案】B

【解析】

根據(jù)矩形和折疊性質(zhì)可得EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在RtBCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.

如圖,∵四邊形ABCD是矩形,

AD=BC,D=B=90°,

根據(jù)折疊的性質(zhì),有HC=AD,H=D,HE=DE,

HC=BC,H=B,

又∠HCE+ECF=90°,BCF+ECF=90°,

∴∠HCE=BCF,

在△EHC和△FBC中,

∴△EHC≌△FBC,

BF=HE,

BF=HE=DE,

設(shè)BF=EH=DE=x,

AF=CF=9﹣x,

RtBCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,

解得:x=4,即DE=EH=BF=4,

AG=DE=EH=BF=4,

GF=AB﹣AG﹣BF=9﹣4﹣4=1,

EF2=EG2+GF2=32+12=10,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)駛向終點(diǎn),在整個(gè)行程中,龍舟離開(kāi)起點(diǎn)的距離()與時(shí)間(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

1)起點(diǎn)與終點(diǎn)之間相距    

2)分別求甲、乙兩支龍舟隊(duì)的函數(shù)關(guān)系式;

3)甲龍舟隊(duì)出發(fā)多少時(shí)間時(shí)兩支龍舟隊(duì)相距200米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ABC=90°,AD∥BC,以AB為直徑作⊙O恰好與CD相切.

(1)求證:AD+BC=CD;

(2)若EOA的中點(diǎn),連結(jié)CE并延長(zhǎng)交DA的延長(zhǎng)線于F,當(dāng)AE=AF時(shí),求sin∠DCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里有4排日光燈,每排燈各由一個(gè)開(kāi)關(guān)控制,但燈的排數(shù)序號(hào)與開(kāi)關(guān)序號(hào)不一定對(duì)應(yīng),其中控制第二排燈的開(kāi)關(guān)已壞(閉合開(kāi)關(guān)時(shí)燈也不亮).

(1)將4個(gè)開(kāi)關(guān)都閉合時(shí),教室里所有燈都亮起的概率是 ;

(2)在4個(gè)開(kāi)關(guān)都閉合的情況下,不知情的雷老師準(zhǔn)備做光學(xué)實(shí)驗(yàn),由于燈光太強(qiáng),他需要關(guān)掉部分燈,于是隨機(jī)將4個(gè)開(kāi)關(guān)中的2個(gè)斷開(kāi),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好關(guān)掉第一排與第三排燈的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).

(1)求事件轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;

(2)寫(xiě)出此情景下一個(gè)不可能發(fā)生的事件.

(3)用樹(shù)狀圖或列表法,求事件轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PHCD;④,其中正確的是______(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大石橋市政府為了落實(shí)暖冬惠民工程,計(jì)劃對(duì)城區(qū)內(nèi)某小區(qū)的部分老舊房屋及供暖管道和部分路段的人行地磚、綠化帶等公共設(shè)施進(jìn)行全面更新改造。該工程乙隊(duì)單獨(dú)完成所需天數(shù)是甲隊(duì)單獨(dú)完成所需天數(shù)的1.5若甲隊(duì)先做10天,剩下兩隊(duì)合作30天完成。

(1)甲乙兩個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.4萬(wàn)元,乙對(duì)每天的施工費(fèi)用為5.6萬(wàn)元,工程施工的預(yù)算費(fèi)用為500萬(wàn)元,為了縮短工期并高效完成工程,擬預(yù)算的費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建立模型:

如圖1,等腰RtABC中,∠ABC90°,CBBA,直線ED經(jīng)過(guò)點(diǎn)B,過(guò)AADEDD,過(guò)CCEEDE.則易證ADBBEC.這個(gè)模型我們稱之為一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標(biāo)系中被大量使用.

模型應(yīng)用:

(1)如圖2,點(diǎn)A04),點(diǎn)B(30),ABC是等腰直角三角形.

①若∠ABC90°,且點(diǎn)C在第一象限,求點(diǎn)C的坐標(biāo);

②若AB為直角邊,求點(diǎn)C的坐標(biāo);

(2)如圖3,長(zhǎng)方形MFNO,O為坐標(biāo)原點(diǎn),F的坐標(biāo)為(8,6),M、N分別在坐標(biāo)軸上,P是線段NF上動(dòng)點(diǎn),設(shè)PNn,已知點(diǎn)G在第一象限,且是直線y2x6上的一點(diǎn),若MPG是以G為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線與直線相交于點(diǎn)

1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫(xiě)出答案,不必寫(xiě)過(guò)程).

2)求的面積.

3)若有一動(dòng)點(diǎn)沿路線運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn) 坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案