【題目】寧安市與哈爾濱市兩地相距360千米.甲車在寧安市,乙車在哈爾濱市,兩車同時出發(fā),相向而行,在A地相遇.為節(jié)約費(fèi)用(兩車相遇并換貨后,均需按原路返回出發(fā)地),兩車換貨后,甲車立即按原路返回寧安市.設(shè)每車在行駛過程中速度保持不變,兩車間距離y(千米)與時間x(小時)的函數(shù)關(guān)系如圖所示.根據(jù)所提供的信息,回答下列問題:

(1)求甲、乙兩車的速度;(2)說明從兩車開始出發(fā)到5小時這段時間乙車的運(yùn)動狀態(tài).

【答案】1)甲、乙兩車的速度分別為70km/h80km/h2)見解析

【解析】

(1)根據(jù)兩車換貨后,甲車立即按原路返回北京市,而乙車又停留1小時后按原路返回石家莊市,又圖象可得出甲車的速度為70km/h,又根據(jù)兩車從出發(fā)開始到A地相遇用時2小時,可計算出乙車的速度;

2)根據(jù)函數(shù)圖像與題意即可求解.

1)由圖象得,3時至4時,是甲車先行駛1小時走的路程,

則甲車的速度為:70÷170km/h;

∵兩車從出發(fā)開始到A地相遇用時2小時,

則乙車的速度為:(30070×2)÷280km/h;

答:甲、乙兩車的速度分別為70km/h、80km/h;

2)根據(jù)函數(shù)圖像與題意可得出發(fā)到5小時這段時間乙車的運(yùn)動狀態(tài)為:

乙車以80km/h的速度從哈爾濱市出發(fā)2小時到達(dá)A地,停留1小時后,再以原速返回哈爾濱市,4-5小時時還在返回的途中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AC,點(diǎn)D為AC的中點(diǎn),B是直線AC上的一點(diǎn),且 BC=AB,BD=1cm,則線段AC的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點(diǎn)B.

(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個動點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)⊙B, ⊙M′都與直線l′相切,半徑分別為R1、R2 , 當(dāng)R1+R2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,且關(guān)于x的方程ax2+bx+c=k有兩個不相等的實根,則常數(shù)k的取值范圍是( )

A.0<k<4
B.﹣3<k<1
C.k<﹣3或k>1
D.k<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進(jìn)的籃球個數(shù)與900元購進(jìn)的足球個數(shù)相等.

1)籃球和足球的單價各是多少元?

2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長線上的點(diǎn),且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題,如圖,正方形ABCD。
(1)請在圖①中作兩條直線,使它們將正方形ABCD的面積三等分;

(2)如圖②,在矩形ABCD中,AB=6,BC=9,在圖②中過頂點(diǎn)A作兩條直線,使它們將矩形ABCD的面積三等分,井說明理由;

(3)如圖③,農(nóng)博園有一塊不規(guī)則的五邊形ABCDE空地,其中AB∥CD、AE∥BC,AB=AC=100米,AE=160米,BC=120米,CD=62.5米,根據(jù)視覺效果和花期特點(diǎn),農(nóng)博園設(shè)計部門想在這片空地種上等面積的三種不同的花,要求從入口A點(diǎn)處修兩條筆直的小路(小路的面積忽略不計)方便游客賞花,兩條小路將這塊地面積三等分.請通過計算畫圖說明其設(shè)計部們能否實現(xiàn),若能實現(xiàn)請確定小路盡頭的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請用含有x整式表示線段AD的長為______m;

2)求這棵樹高有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為

查看答案和解析>>

同步練習(xí)冊答案