(2007•淄博)在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求過A,O,B三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)B關(guān)于拋物線的對(duì)稱軸l的對(duì)稱點(diǎn)為B1,求△AB1B的面積.

【答案】分析:(1)如果過A作AC⊥x軸,垂足為C,作BD⊥x軸垂足為D.不難得出△AOC和△BOD全等,那么B的橫坐標(biāo)就是A點(diǎn)縱坐標(biāo)的絕對(duì)值,B的縱坐標(biāo)就是A點(diǎn)的橫坐標(biāo)的絕對(duì)值,由此可得出B的坐標(biāo).
(2)已知了A,O的坐標(biāo),根據(jù)(1)求出的B點(diǎn)的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式.
(3)根據(jù)(2)的解析式可得出對(duì)稱軸的解析式,然后根據(jù)B點(diǎn)的坐標(biāo)得出B1的坐標(biāo),那么BB1就是三角形的底邊,B的縱坐標(biāo)與A的縱坐標(biāo)的差的絕對(duì)值就是△ABB1的高,由此可求出其面積.
解答:解:(1)作AC⊥x軸,垂足為C,作BD⊥x軸垂足為D.
則∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90°.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°
∴∠OAC=∠BOD.
在△ACO和△ODB中,

∴△ACO≌△ODB(AAS).
∴OD=AC=1,DB=OC=3.
∴點(diǎn)B的坐標(biāo)為(1,3).

(2)因拋物線過原點(diǎn),
故可設(shè)所求拋物線的解析式為y=ax2+bx.
將A(-3,1),B(1,3)兩點(diǎn)代入,
,
解得:a=,b=
故所求拋物線的解析式為y=x2+x.

(3)在拋物線y=x2+x中,對(duì)稱軸l的方程是x=-=-
點(diǎn)B1是B關(guān)于拋物線的對(duì)稱軸l的對(duì)稱點(diǎn),
故B1坐標(biāo)(-,3)
在△AB1B中,底邊B1B=,高的長(zhǎng)為2.
故S△AB1B=××2=
點(diǎn)評(píng):本題主要考查了全等三角形的判定以及用待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•淄博)在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求過A,O,B三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)B關(guān)于拋物線的對(duì)稱軸l的對(duì)稱點(diǎn)為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省東營(yíng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•淄博)在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求過A,O,B三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)B關(guān)于拋物線的對(duì)稱軸l的對(duì)稱點(diǎn)為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•淄博)在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求過A,O,B三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)B關(guān)于拋物線的對(duì)稱軸l的對(duì)稱點(diǎn)為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江西省撫州市臨川區(qū)羅湖中學(xué)數(shù)學(xué)中考模擬試卷(三)(解析版) 題型:選擇題

(2007•淄博)在下圖右側(cè)的四個(gè)三角形中,不能由△ABC經(jīng)過旋轉(zhuǎn)或平移得到的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案