【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).若點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
【答案】(1)全等(2)vQ=1.5cm/s
【解析】試題分析:(1)根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中BP、CQ和BD、PC邊的長(zhǎng),根據(jù)SAS判定兩個(gè)三角形全等.
(2)根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;
試題解析:解:(1)全等,理由如下:
∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,點(diǎn)D為AB的中點(diǎn),∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.
∵∠B=∠C,∴△BPD≌△CPQ;
(2)∵vP≠vQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,則BP=CP=2,BD=CQ=3,∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間為:t=2秒,∴vQ=1.5cm/s;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解全校學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.同時(shí)把調(diào)查得到的結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“公交車”部分所對(duì)應(yīng)的圓心角是多少度?
(4)若全校有1600名學(xué)生,估計(jì)該校乘坐私家車上學(xué)的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)D為BC的中點(diǎn),且AB=18cm,AC=4CD.
(1)圖中共有 條線段;
(2)求AC的長(zhǎng);
(3)若點(diǎn)E在直線AB上,且EA=2cm,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,∠A=∠D,說(shuō)明∠F與∠C相等的理由.
解:∵∠1=∠2( 已知 ),∠2=∠4 ( ),
∴∠1=∠4( 等量代換 ),
∴FB∥EC( ),
∴∠3=∠C( 兩直線平行,同位角相等 ).
∵∠A=∠D( ),
∴ED∥AC( ),
∴∠F=∠3 ( ),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知等腰三角形的一邊長(zhǎng)等于8cm,一邊長(zhǎng)等于9cm,求它的周長(zhǎng);
(2)等腰三角形的一邊長(zhǎng)等于6cm,周長(zhǎng)等于28cm,求其他兩邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(5,12),且與邊BC交于點(diǎn)D.若AB=BD,則點(diǎn)D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=8厘米,如果動(dòng)點(diǎn)P在線段AB上以2厘米/秒的速度由A點(diǎn)向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在以1厘米/秒的速度線段BC上由C點(diǎn)向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)過(guò)程停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)AQ⊥DP時(shí),t的值為_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=60°,BC=6,直線MN∥BC,且分別交邊AB,AC于點(diǎn)M,N,已知直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點(diǎn)A旋轉(zhuǎn),使點(diǎn)M落在邊BC上的點(diǎn)D處,那么BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠AOB=90°,OC平分∠AOB,點(diǎn)P在射線OC上.點(diǎn)E在射線OA上,點(diǎn)F在射線OB上,且∠EPF=90°.
(1)如圖1,求證:PE=PF;
(2)如圖2,作點(diǎn)F關(guān)于直線EP的對(duì)稱點(diǎn)F′,過(guò)F′點(diǎn)作FH⊥OF于H,連接EF′,F′H與EP交于點(diǎn)M.連接FM,圖中與∠EFM相等的角共有 個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com