【題目】已知,如圖,點(diǎn)D是△ABC的邊AB的中點(diǎn),四邊形BCED是平行四邊形,
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),平行四邊形ADCE是矩形?
【答案】證明:(1)因?yàn)樗倪呅蜝CED是平行四邊形,
所以BD=CE且BD∥CE,
又因?yàn)镈是△ABC的邊AB的中點(diǎn),
所以AD=BD,即DA=CE,
又因?yàn)镃E∥BD,
所以四邊形ADCE是平行四邊形.
(2)當(dāng)△ABC為等腰三角形且AC=BC時(shí),CD是等腰三角形底邊AB上的中線,則CD⊥AD,平行四邊形ADCE的角∠ADC=90°,
因此四邊形ADCE是矩形.
【解析】證明是平行四邊形的方法有很多,此題用一組對(duì)邊平行且相等較為簡(jiǎn)單,在平行四邊形的基礎(chǔ)上只需一個(gè)角是直角即可.
【考點(diǎn)精析】本題主要考查了矩形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A,B兩種花草,第一次分別購(gòu)進(jìn)A,B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A,B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購(gòu)進(jìn)的A,B兩種花草價(jià)格均分別相同).
(1)A,B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn)再求值:
[(a+b)(b﹣2a)﹣(a﹣2b)2+3b2]÷(﹣3a),其中a=﹣3,b=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P為正方形ABCD內(nèi)一點(diǎn),且AP=2,將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△AP′D.
(1)作出旋轉(zhuǎn)后的圖形;
(2)試求△APP′的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】繼2017年北倉(cāng)區(qū)經(jīng)濟(jì)總量邁上1000億元的新臺(tái)階,2018年再創(chuàng)新高,全年生產(chǎn)總值約1147億元,1147億用科學(xué)記數(shù)法表示為( 。
A. 1.147×108B. 1.147×109C. 1.147×1010D. 1.147×1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天安門廣場(chǎng)的面積約440000平方米. 440000這個(gè)數(shù)用科學(xué)計(jì)數(shù)法表示為
A. 44×104. B. 4.4×105. C. 0.44×106. D. 4.4×104.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中,不能確定四邊形ABCD為平行四邊形的是( 。
A. ∠A=∠C,∠B=∠D B. ∠A=∠B=∠C=90°
C. ∠A+∠B=180°,∠B+∠C=180° D. ∠A+∠B=180°,∠C+∠D=180°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com