△ABC中,AB=AC,∠BAC=α(0º<α<60º),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60º得到線段BD.(本題圖在答題卷上)
(1)如圖1,直接寫(xiě)出∠ABD的大小(用含α的式子表示);
(2)如圖2,∠BCE=150º,∠ABE=60º,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連接DE,若∠DEC=45º,求α的值.
解:(1)∵AB=AC,∠A=α, ∴∠ABC=∠ACB=(180°-∠A)=90°-α,
∵∠ABD=∠ABC-∠DBC,∠DBC=60° 即∠ABD=30°-α ------(2分)
(2)△ABE是等邊三角形
證明:連接AD,CD,ED,
∵線段BC繞B逆時(shí)針旋轉(zhuǎn)60°得到線段BD, 則BC=BD,∠DBC=60°
∴△BCD為等邊三角形,
在△ABD與△ACD中
AB=AC
AD=AD
BD=CD
∴△ABD≌△ACD, ∴∠BAD=∠CAD=∠BAC=α
∵∠BCE=150° ∴∠BEC=180°-(30°-α)-150°=α=∠BAD
在△ABD和△EBC中
∠BEC=∠BAD
∠EBC=∠ABD
BC=BD
∴△ABD≌△EBC, ∴AB=BE,
∵∠ABE=60° ∴△ABE是等邊三角形 ------(4分)
(3)∵∠BCD=60°,∠BCE=150° ∴∠DCE=150°-60°=90°,
∵∠DEC=45° ∴△DEC為等腰直角三角形 ∴DC=CE=BC,
∵∠BCE=150° ∴∠EBC=(180°-150°)=15°
∵∠EBC=30°-α=15° ∴α=30° ------(4分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
用火柴棍搭三角形,如下圖:
1個(gè) 2個(gè) 3個(gè) 4個(gè) …
請(qǐng)你找出規(guī)律猜想搭個(gè)三角形需要__________根火柴棍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若不等式組有解,則a的取值范圍是( )
A.a(chǎn)>-1 B.a(chǎn)≥-1 C.a(chǎn)≤1 D.a(chǎn)<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為(x).即當(dāng)n為非負(fù)整數(shù)時(shí),若,則(x)=n.如(0.46)=0,(3.67)=4.給出下列關(guān)于(x)的結(jié)論:
①(1.493)=1; ②(2x)=2(x);
③若(−1)=4,則實(shí)數(shù)x的取值范圍是9≤x<11;
④當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有(m+2013x)=m+(2013x);
⑤(x+y)=(x)+(y);
其中,正確的結(jié)論有 .(填寫(xiě)所有正確的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對(duì)稱軸;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
兩根木桿如圖2910,請(qǐng)?jiān)趫D中畫(huà)出形成桿影的太陽(yáng)光線,并畫(huà)出此時(shí)木桿B的影子.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com