【題目】某排球隊6名場上隊員的身高(單位:cm)是:180,182,184,186,190,194.現(xiàn)用一名身高為188cm的隊員換下場上身高為182cm的隊員,與換人前相比,場上隊員的身高
A.平均數(shù)變小,方差變小B.平均數(shù)變小,方差變大
C.平均數(shù)變大,方差變小D.平均數(shù)變大,方差變大
【答案】C
【解析】
分別計算出原數(shù)據(jù)和新數(shù)據(jù)的平均數(shù)和方差即可得.
原數(shù)據(jù)的平均數(shù)為×(180+182+184+186+190+194)=186(cm),
方差為×[(180186)2+(182186)2+(184186)2+(186186)2+(190186)2+(194186)2]=16(cm2),
新數(shù)據(jù)的平均數(shù)為×(180+188+184+186+190+194)=187(cm),
方差為×[(180187)2+(188187)2+(184187)2+(186187)2+(190187)2+(194187)2]=13(cm2),
∴平均數(shù)變大,方差變小,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,、為上的點,為圓外一點,、均與圓相切,設(shè),,則與滿足的關(guān)系式為( )
A.B.C.D.以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,
(1)求⊙O的半徑;
(2)求O到弦BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2+ax+b與x軸兩個交點間的距離為2,則稱此拋物線為定弦拋物線.已知某定弦拋物線的對稱軸為直線x=1,將此拋物線向左平移1個單位,再向下平移3個單位,得到的拋物線的解析式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=m,AD=n.
(1)若m=4,矩形ABCD的邊CD上是否存在點P,使得∠APB=90°?寫出點P存在或不存在的可能情況和此時n滿足的條件.
(2)矩形ABCD的邊上是否存在點P,使得∠APB=60°?寫出點P存在或不存在的可能情況和此時m、n滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,在Rt△OAB中,∠OAB=90°,且點B的坐標(biāo)為(4,2).
(1)畫出△OAB向下平移3個單位長度后的△O1A1B1;
(2)畫出△OAB繞點O逆時針旋轉(zhuǎn)90°后的△OA2B2;
(3)在(2)的條件下,求點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長(結(jié)果保留根號和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于點,與軸交于,兩點,點在點左側(cè).點的坐標(biāo)為,.
(1)求拋物線的解析式;
(2)當(dāng)時,如圖所示,若點是第三象限拋物線上方的動點,設(shè)點的橫坐標(biāo)為,三角形的面積為,求出與的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;請問當(dāng)為何值時,有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和同學(xué)們在學(xué)習(xí)圓的基本性質(zhì)時發(fā)現(xiàn)了一個結(jié)論:如圖1,圓中,是圓中的兩條弦,于點,于點,若,則.
(1)請幫小明證明這個結(jié)論;
(2)請參考小明思考問題的方法解決問題,如圖2,在中,,為的內(nèi)心,以為圓心,為半徑的圓與三邊分別相交于點、、、. 若,,求的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com