【題目】如圖,點是正方形內(nèi)一點,連接、、,若,,,則正方形的邊長為________

【答案】

【解析】

ABP繞點B沿順時針方向旋轉(zhuǎn)90°BCQ的位置,連接PQ;先求出PQ的長,再求出∠PQC=90°,利用勾股定理求出QC的長,最后利用勾股定理求出BC的長.

如圖,ABP繞點B沿順時針方向旋轉(zhuǎn)90°,


BCQ的位置,連接PQ;
BQ=BP=,BQC=BPA=135°,
PBQ是等腰直角三角形,
PQ=,
故∠BQP=BPQ=45°,PQC=135°45°=90°;
由勾股定理得:QC2=PC2PQ2,,CQ=2BQC,BQC=135°,BQ=,CQ=2,
BBH垂直CQ,CQ的延長線于H;CH=CQ+QH,BH=HQ=,
解得:BC2=BH2+CH2,BC=
故答案為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列圖象中,可以表示一次函數(shù)與正比例函數(shù),為常數(shù),且)的圖象的是()

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,點D上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.

(1)求證:AC=CE;

(2)求證:BC2﹣AC2=ABAC;

(3)已知⊙O的半徑為3.

①若=,求BC的長;

②當為何值時,ABAC的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D

(1)求作∠ABC的平分線,分別交ADACE,F兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)證明:AE=AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC=BC=10厘米,MN分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當點N第一次到達B點時,MN同時停止運動.

1M、N同時運動幾秒后,M、N兩點重合?

2M、N同時運動幾秒后,可得等邊三角形AMN?

3M、NBC邊上運動時,能否得到以MN為底邊的等腰AMN,如果存在,請求出此時MN運動的時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廣告公司為了招聘一名創(chuàng)意策劃,準備從專業(yè)技能和創(chuàng)新能力兩方面進行考核,成績高者錄。、乙、丙三名應(yīng)聘者的考核成績以百分制統(tǒng)計如下:

1)如果公司認為專業(yè)技能和創(chuàng)新能力同等重要,則應(yīng)聘人   將被錄。

2)如果公司認為職員的創(chuàng)新能力比專業(yè)技能重要,因此分別賦予它們64的權(quán).計算他們賦權(quán)后各自的平均成績,并說明誰將被錄取.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一次函數(shù)為常數(shù))的圖像位于軸下方的部分沿軸翻折到軸上方,和一次函數(shù)為常數(shù))的圖像位于軸及上方的部分組成“”型折線,過點軸的平行線,若該“”型折線在直線下方的點的橫坐標滿足,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DABC內(nèi)一點,EABC外一點,且∠ABC=∠DBE,∠3=∠4

求證:(1ABD∽△CBE;

2ABC∽△DBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】慢車和快車先后從甲地出發(fā)沿直線道路勻速駛向乙地,快車比慢車晚出發(fā)0.5小時,行駛一段時間后,快車途中休息,休息后繼續(xù)按原速行駛,到達乙地后停止.慢車和快車離甲地的距離y(千米)與慢車行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示.有以下說法:①快車速度是120千米/小時;②慢車到達乙地比快車到達乙地晚了0.5小時;③點C坐標(,100);④線段BC對應(yīng)的函數(shù)表達式為y120x60(0.5≤x≤);其中正確的個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案