精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,直線y=-
23
x+2
與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到△AO'B',求直線AB'的解析式.
分析:根據(jù)△AOB繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到△AO'B',得出B'點(diǎn)坐標(biāo)為(5,3),再利用A點(diǎn)坐標(biāo)求出一次函數(shù)解析式即可.
解答:解:依題意,得A、B的坐標(biāo)分別為A(3,0),B(0,2)(2分)
∴OA=3,OB=2.
∵△AOB繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到△AO'B',
∴AO'=OA=3,O'B'=OB=2.
∴B'點(diǎn)坐標(biāo)為(5,3).(3分)
設(shè)直線AB'的解析式為y=kx+b,
3k+b=0
5k+b=3.

解得
k=
3
2
b=-
9
2
.

∴直線AB'的解析式為y=
3
2
x-
9
2
.(5分)
點(diǎn)評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及旋轉(zhuǎn)的性質(zhì),根據(jù)已知得出B′點(diǎn)的坐標(biāo)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案