已知點(diǎn)和點(diǎn)在拋物線上.
(1)求的值及點(diǎn)的坐標(biāo);
(2)點(diǎn)在軸上,且滿足△是以為直角邊的直角三角形,求點(diǎn)的坐標(biāo);
(3)平移拋物線,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為,點(diǎn)B的對(duì)應(yīng)點(diǎn)為. 點(diǎn)M(2,0)在x軸上,當(dāng)拋物線向右平移到某個(gè)位置時(shí),最短,求此時(shí)拋物線的函數(shù)解析式.
(1), B(-4,-8);(2)(0,0)或(0,-12);(3)右平移個(gè)單位時(shí),拋物線的解析式為.
解析試題分析:(1)把點(diǎn)A(2,-2)代入求出a=的值;把點(diǎn)B(-4,n)代入求得n=-8;
(2)先求出直線AB的解析式,然后進(jìn)行分類討論求出點(diǎn)P的坐標(biāo);
(3)利用對(duì)稱性求解即可.
試題解析:(1)a=
拋物線解析式為:
B(-4,-8);
(2) 記直線AB與x、y軸分別交于C、D兩點(diǎn),
則直線AB:y=x-4
C(4,0)、D(0,-4)
在Rt△COD中,∵OC=DO
∴∠ODA=45°
以A為直角頂點(diǎn),則
在中,
則
∴
又∵D(0,-4)
∴(0,0)
以B為直角頂點(diǎn),則
在中,
∴
∴(0,-12)
∴P(0,0)或(0,-12)
(3)記點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為E(2,2)
則BE:
令y=0,得
即BE與x軸的交點(diǎn)為Q(,0)
故拋物線向右平移個(gè)單位時(shí)最短
此時(shí),拋物線的解析式為
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知拋物線交軸于A(2,0),B(6,0)兩點(diǎn),交軸于點(diǎn)C(0,).
(1)求此拋物線的解析式;
(2)若此拋物線的對(duì)稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF所對(duì)圓心角的度數(shù);
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,4),已知點(diǎn)E(0,1).
(1)求m的值及點(diǎn)A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點(diǎn)E′落在該二次函數(shù)的圖象上時(shí),求AA′的長(zhǎng);
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時(shí)點(diǎn)E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時(shí),求點(diǎn)E′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:如圖,直線與x軸相交于點(diǎn)A,與直線相交于點(diǎn)P.動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著OPA的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O,A重合),過(guò)點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分面積為S.
(1)求點(diǎn)P的坐標(biāo);
(2)請(qǐng)判斷△OPA的形狀并說(shuō)明理由;
(3)請(qǐng)?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與軸相交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;
(2)在軸的正半軸上是否存在點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y=ax2+bx+c經(jīng)過(guò)(-1,0),(0,-3),(2,-3)三點(diǎn),求這條拋物線的解析式,并指出對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).
(1)b= ,c= ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標(biāo)系中畫出該函數(shù)的圖像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對(duì)稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請(qǐng)證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對(duì)稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4)、D(2, n)三點(diǎn).
(1)求拋物線的解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)M是拋物線對(duì)稱軸上一動(dòng)點(diǎn),求使BM-AM的值最大時(shí)的點(diǎn)M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點(diǎn)C,交拋物線于點(diǎn)N,求點(diǎn)N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請(qǐng)求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com