【題目】全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個(gè)重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對部分家庭五月份的平均每天看書學(xué)習(xí)時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了 個(gè)家庭;
(2)將圖①中的條形圖補(bǔ)充完整;
(3)學(xué)習(xí)時(shí)間在2~2.5小時(shí)的部分對應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該社區(qū)有家庭有3000個(gè),請你估計(jì)該社區(qū)學(xué)習(xí)時(shí)間不少于1小時(shí)的約有多少個(gè)家庭?
【答案】(1)200;(2)見解析;(3)36;(4)該社區(qū)學(xué)習(xí)時(shí)間不少于1小時(shí)的家庭約有2100個(gè).
【解析】
(1)根據(jù)1.5~2小時(shí)的圓心角度數(shù)求出1.5~2小時(shí)所占的百分比,再用1.5~2小時(shí)的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);
(2)用抽查的總?cè)藬?shù)乘以學(xué)習(xí)0.5-1小時(shí)的家庭所占的百分比求出學(xué)習(xí)0.5-1小時(shí)的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學(xué)習(xí)2-2.5小時(shí)的家庭數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;
(3)用360°乘以學(xué)習(xí)時(shí)間在2~2.5小時(shí)所占的百分比,即可求出學(xué)習(xí)時(shí)間在2~2.5小時(shí)的部分對應(yīng)的扇形圓心角的度數(shù);
(4)用該社區(qū)所有家庭數(shù)乘以學(xué)習(xí)時(shí)間不少于1小時(shí)的家庭數(shù)所占的百分比即可得出答案.
解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個(gè));
故答案為200;
(2)學(xué)習(xí)0.5﹣1小時(shí)的家庭數(shù)有:200×=60(個(gè)),
學(xué)習(xí)2﹣2.5小時(shí)的家庭數(shù)有:200﹣60﹣90﹣30=20(個(gè)),
補(bǔ)圖如下:
(3)學(xué)習(xí)時(shí)間在2~2.5小時(shí)的部分對應(yīng)的扇形圓心角的度數(shù)是:360×=36°;
故答案為36;
(4)根據(jù)題意得:
3000×=2100(個(gè)).
答:該社區(qū)學(xué)習(xí)時(shí)間不少于1小時(shí)的家庭約有2100個(gè).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于給定的,我們給出如下定義:若點(diǎn)M是邊上的一個(gè)定點(diǎn),且以M為圓心的半圓上的所有點(diǎn)都在的內(nèi)部或邊上,則稱這樣的半圓為邊上的點(diǎn)M關(guān)于的內(nèi)半圓,并將半徑最大的內(nèi)半圓稱為點(diǎn)M關(guān)于的最大內(nèi)半圓.若點(diǎn)M是邊上的一個(gè)動點(diǎn)(M不與B,C重合),則在所有的點(diǎn)M關(guān)于的最大內(nèi)半圓中,將半徑最大的內(nèi)半圓稱為關(guān)于的內(nèi)半圓.
(1)在中,,,
①如圖1,點(diǎn)D在邊上,且,直接寫出點(diǎn)D關(guān)于的最大內(nèi)半圓的半徑長;
②如圖2,畫出關(guān)于的內(nèi)半圓,并直接寫出它的半徑長;
(2)在平面直角坐標(biāo)系中,點(diǎn)E的坐標(biāo)為,點(diǎn)P在直線上運(yùn)動(P不與O重合),將關(guān)于的內(nèi)半圓半徑記為R,當(dāng)時(shí),求點(diǎn)P的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM,求∠CAM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價(jià)、售價(jià)如下表所示.
A型 | B型 | |
進(jìn)價(jià)(元/盞) | 40 | 65 |
售價(jià)(元/盞) | 60 | 100 |
(1)若該商場購進(jìn)這批臺燈共用去2500元,問這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進(jìn)B種臺燈多少盞?
(3)若該商場預(yù)計(jì)用不少于2500元且不多于2600元的資金購進(jìn)這批臺燈,為了打開B種臺燈的銷路,商場決定每售出一盞B種臺燈,返還顧客現(xiàn)金a元(10<a<20),問該商場該如何進(jìn)貨,才能獲得最大的利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點(diǎn)A、B,與y軸分別交于點(diǎn)C,其中點(diǎn),點(diǎn),且.
(1)求拋物線的解析式;
(2)點(diǎn)P是線段AB上一動點(diǎn),過P作交BC于D,當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是位于線段BC上方的拋物線上一點(diǎn),當(dāng)恰好等于中的某個(gè)角時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,
(1)填空:的值為 ; ∠AMB的度數(shù)為 ,
(2)類比探究,如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M,請判斷 的值及∠AMB的度數(shù),并說明理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長度的速度向點(diǎn)O運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動,設(shè)點(diǎn)P、Q運(yùn)動的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步提高全民“節(jié)約用水”意識,某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動,李明隨機(jī)抽查了所住小區(qū)x戶家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖:
(1)求x并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這x戶家庭的月平均用水量;并估計(jì)李明所住小區(qū)620戶家庭中月用水量低于月平均用水量的家庭戶數(shù);
(3)從月用水量為5m3和9m3的家庭中任選兩戶進(jìn)行用水情況問卷調(diào)查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是5,AB是⊙O的弦,直徑CD⊥AB于點(diǎn)E.
(1)點(diǎn)F是⊙O上任意一點(diǎn),請僅用無刻度的直尺畫出∠AFB的角平分線;
(2)若AC=8,試求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com