【題目】如圖,已知拋物線y=﹣x2+bx+cx軸交于點A(﹣1,0)和點B3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點ED是拋物線的頂點.

1)求此拋物線的解析式;

2)直接寫出點C和點D的坐標(biāo);

3)若點P在第一象限內(nèi)的拋物線上,且SABP4SCOE,求P點坐標(biāo).注:二次函數(shù)yax2+bx+ca≠0)的頂點坐標(biāo)為.

【答案】1y=﹣x2+2x+3;(2D1,4);(3P23

【解析】

1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)bc的值,進(jìn)而可得到拋物線的解析式;
2C點是拋物線與y軸的交點,令x=0,可得C點坐標(biāo),D點是頂點坐標(biāo),將函數(shù)解析式配方即得拋物線的頂點D的坐標(biāo);
3)設(shè)Px,y)(x0,y0),根據(jù)題意列出方程即可求得y,即得P點坐標(biāo).

解:(1)由點A(﹣1,0)和點B3,0)得,

解得:

∴拋物線的解析式為y=﹣x2+2x+3;

2)令x0,則y3,

C0,3),

y=﹣x2+2x+3=﹣(x12+4

D1,4);

3)設(shè)Px,y)(x0,y0),

SCOE×1×3,SABP×4y2y,

SABP4SCOE,∴2y,

y3,∴﹣x2+2x+33

解得:x10(不合題意,舍去),x22,

P23).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結(jié)論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島是我國固有領(lǐng)土,為測量釣魚島東西兩端AB的距離,如圖2,我勘測飛機在距海平面垂直高度為1公里的點C處,測得端點A的俯角為45°,然后沿著平行于AB的方向飛行3.2公里到點D,并測得端點B的俯角為37°,求釣魚島兩端AB的距離.(結(jié)果精確到0.1公里,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:RTABCRTDEF中,∠ACB=∠EDF90°,∠DEF45°EF8cm,AC16cm,BC12cm.現(xiàn)將RTABCRTDEF按圖1的方式擺放,使點C與點E重合,點B、CE)、F在同一條直線上,并按如下方式運動.

運動一:如圖2,ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運動,DEAC相交于點Q,當(dāng)點Q與點D重合時暫停運動;

運動二:在運動一的基礎(chǔ)上,如圖3,RTABC繞著點C順時針旋轉(zhuǎn),CADF交于點Q,CBDE交于點P,此時點QDF上勻速運動,速度為cm/s,當(dāng)QCDF時暫停旋轉(zhuǎn);

運動三:在運動二的基礎(chǔ)上,如圖4,RTABC1cm/s的速度沿EF向終點F勻速運動,直到點C與點F重合時為止.

設(shè)運動時間為ts),中間的暫停不計時,

解答下列問題

1)在RTABC從運動一到最后運動三結(jié)束時,整個過程共耗時   s;

2)在整個運動過程中,設(shè)RTABCRTDEF的重疊部分的面積為Scm2),求St之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

3)在整個運動過程中,是否存在某一時刻,點Q正好在線段AB的中垂線上,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,把RtABCRtDEF按圖1擺放,(點CE點重合),點B、CE、F始終在同一條直線上,∠ACB=EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如圖2,DEF從圖1出發(fā),以每秒1個單位的速度沿CBABC勻速運動,同時,點PA出發(fā),沿AB以每秒1個單位向點B勻速移動,ACDEF的直角邊相交于Q,當(dāng)P到達(dá)終點B時,DEF同時停止運動,連接PQ,設(shè)移動的時間為ts).解答下列問題:

(1)DEF在平移的過程中,當(dāng)點DRtABC的邊AC上時,求t的值;

(2)在移動過程中,是否存在APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.

(3)在移動過程中,當(dāng)0t≤5時,連接PE,是否存在PQE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD是一次函數(shù)yx+1圖象的其中一個伴侶正方形.

1)若某函數(shù)是一次函數(shù)yx+1,求它的圖象的所有伴侶正方形的邊長;

2)若某函數(shù)是反比例函數(shù),它的圖象的伴侶正方形為ABCD,點D2m)(m2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;

3)若某函數(shù)是二次函數(shù)yax2+ca≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標(biāo)為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標(biāo),寫出符合題意的其中一條拋物線解析式,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?.(本小題只需直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=m.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為( 。

A. 193 B. 194 C. 195 D. 196

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:x軸交于點,與y軸交于點B,點C是線段OA上一動點以點A為圓心,AC長為半徑作x軸于另一點D,交線段AB于點E,連結(jié)OE并延長交于點F.

求直線l的函數(shù)表達(dá)式和的值;

如圖2,連結(jié)CE,當(dāng)時,

求證:

求點E的坐標(biāo);

當(dāng)點C在線段OA上運動時,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=90°,點D在邊AB上,AD=AC=7,BD=BC.動點M從點C出發(fā),以每秒1個單位的速度沿CA向點A運動,同時,動點N從點D出發(fā),以每秒2個單位的速度沿DA向點A運動.當(dāng)一個點到達(dá)點A時,點M、N兩點同時停止運動.設(shè)MN運動的時間為t秒.

1)求cosA的值.

2)當(dāng)以MN為直徑的圓與ABC一邊相切時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案