【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直與x軸,垂足為點(diǎn)B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點(diǎn)C,且與AB相交于點(diǎn)D,OB=4,AD=3

(1)求反比例函數(shù)的解析式;

(2)求cos∠OAB的值;

(3)求經(jīng)過C、D兩點(diǎn)的一次函數(shù)解析式.

【答案】(1);(2);(3)

【解析】

試題分析:(1)設(shè)點(diǎn)D的坐標(biāo)為(4,m)(m>0),則點(diǎn)A的坐標(biāo)為(4,3+m),由點(diǎn)A的坐標(biāo)表示出點(diǎn)C的坐標(biāo),根據(jù)C、D點(diǎn)在反比例函數(shù)圖象上結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出關(guān)于k、m的二元一次方程,解方程即可得出結(jié)論;

(2)由m的值,可找出點(diǎn)A的坐標(biāo),由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結(jié)論;

(3)由m的值,可找出點(diǎn)C、D的坐標(biāo),設(shè)出過點(diǎn)C、D的一次函數(shù)的解析式為y=ax+b,由點(diǎn)C、D的坐標(biāo)利用待定系數(shù)法即可得出結(jié)論.

試題解析:(1)設(shè)點(diǎn)D的坐標(biāo)為(4,m)(m>0),則點(diǎn)A的坐標(biāo)為(4,3+m),∵點(diǎn)C為線段AO的中點(diǎn),∴點(diǎn)C的坐標(biāo)為(2,).

∵點(diǎn)C、點(diǎn)D均在反比例函數(shù)的函數(shù)圖象上,∴,解得:,反比例函數(shù)的解析式為

(2)∵m=1,∴點(diǎn)A的坐標(biāo)為(4,4),∴OB=4,AB=4.

在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==,cos∠OAB==

(3))∵m=1,∴點(diǎn)C的坐標(biāo)為(2,2),點(diǎn)D的坐標(biāo)為(4,1).

設(shè)經(jīng)過點(diǎn)C、D的一次函數(shù)的解析式為y=ax+b,則有,解得:經(jīng)過C、D兩點(diǎn)的一次函數(shù)解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中的糾錯情況,收集整理了學(xué)生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的八年級(5)班和八年級(6)班進(jìn)行了檢測.并從兩班各隨機(jī)抽取10名學(xué)生的得分繪制成下列兩個統(tǒng)計(jì)圖.根據(jù)以上信息,整理分析數(shù)據(jù)如下:

班級

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

八年級(5)班

a

24

24

八年級(6)班

24

b

c

1)求出表格中ab,c的值;

2)你認(rèn)為哪個班的學(xué)生糾錯得分情況比較整齊一些,通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn)(不與C、D重合),連接AE,過點(diǎn)AAFAECB的延長線于點(diǎn)F

1)求證:AE=AF;

2)連接EFNEF之中點(diǎn),連接BN,求的值;

3)以BF為邊作正方形BFMH,如圖2,CHAF相交于點(diǎn)Q,當(dāng)ECD上運(yùn)動(不與CD重合),問∠CQD的大小是否發(fā)生變化?若不變,求其值;若變化,請指出其范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是4,點(diǎn)PAD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李國慶長假期間的某天下午的營運(yùn)全是在南北走向的城區(qū)市心路上進(jìn)行的,如果規(guī)定向南行駛為正,他這天下午行車的里程(單位:千米)如下:

+8,﹣6,﹣5+10,﹣5,+3,﹣2,+6,+2,﹣5

1)小李下午出發(fā)地記為0,他將最后一名乘客送抵目的地時,小李距下午出發(fā)地有多遠(yuǎn)?

2)如果汽車耗油量為0.4/千米,油價(jià)每升5.80元,那么這天下午汽車共需花費(fèi)油價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時,延長BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點(diǎn),N是AC邊上的一動點(diǎn),則MN+MC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進(jìn)了A,B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見下表:

A型銷售數(shù)量(臺)

B型銷售數(shù)量(臺)

總利潤(元)

5

10

2 000

10

5

2 500

(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?

2)該公司計(jì)劃一次購進(jìn)兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進(jìn)貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設(shè)計(jì)相應(yīng)的進(jìn)貨方案;

3)已知A型空氣凈化器的凈化能力為300 m3/小時,B型空氣凈化器的凈化能力為200 m3/小時.某長方體室內(nèi)活動場地的總面積為200 m,室內(nèi)墻高3 m.該場地負(fù)責(zé)人計(jì)劃購買5臺空氣凈化器每天花費(fèi)30分鐘將室內(nèi)空氣凈化一新,如不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接受了 20 天內(nèi)生產(chǎn)1200 GH 型電子產(chǎn)品的總?cè)蝿?wù)。已知每臺GH 型產(chǎn)品由 4 G 型裝 置和3 H 型裝置配套組成。工廠現(xiàn)有80 名工人,每個工人每天能加工6 G 型裝置或3 H 型裝置。工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G 、H 型裝置數(shù)量正好組成GH 型產(chǎn)品.

1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH 型電子產(chǎn)品?

2)工廠補(bǔ)充 40名新工人,這些新工人只能獨(dú)立進(jìn)行G 型裝置的加工,且每人每天只能加工 4G型裝置,則補(bǔ)充新工人后每天能配套生產(chǎn)多少產(chǎn)品?補(bǔ)充新工人后20天內(nèi)能完成總?cè)蝿?wù)嗎?

查看答案和解析>>

同步練習(xí)冊答案