某校八年級學生小麗,小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
小紅:通過調查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?[利潤=銷售量×(銷售單價-進價)].
(3)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均低于225千克,則此時該超市銷售這種水果每天獲取的利潤最大是多少?
【答案】
分析:(1)以10元/千克的價格銷售,那么每天可售出300千克;以13元/千克的價格銷售,那么每天可獲取利潤750元.就相當于直線過點(10,300),(13,150),然后列方程組解答即可.
(2)根據(jù)利潤=銷售量×(銷售單價-進價)寫出解析式,W=(-50x+800)(x-8)=600求出即可;
(3)由二次函數(shù)的性質以及利用配方法求最大值,自變量的取值范圍解答這一問題.
解答:解:(1)當銷售單價為13元/千克時,銷售量為:
=150千克
設y與x的函數(shù)關系式為:y=kx+b(k≠0)
把(10,300),(13,150)分別代入得:
,
解得
,
故y與x的函數(shù)關系式為:y=-50x+800(x>0)
(2)∵利潤=銷售量×(銷售單價-進價)
∴W=(-50x+800)(x-8)=600
0=-50(x-12)
2+200
解得:x
1=10,x
2=14.
∴當銷售單價為10或14元時,每天可獲得的利潤是600元.
(3)設每天水果的利潤w元,
則W=(-50x+800)(x-8)
=-50x
2+1200x-6400
=-50(x-12)
2+800
又∵水果每天的銷售量均低于225kg,水果的進價為8元/千克,
∴-50x+800≤225,
∴x≥11.5,
∴當x=11.5時,W
最大=787.5(元).
答:此時該超市銷售這種水果每天獲取的利潤最大是787.5元.
點評:此題考查待定系數(shù)法求一次函數(shù),一元二次方程,以及二次函數(shù)的性質與不等式,是一道綜合性較強的題目.