如圖,P是⊙O外一點,PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為( )
A.18πcm
B.16πcm
C.20πcm
D.24πcm
【答案】分析:如圖,連接OA,根據(jù)切線的性質(zhì)證得△AOP是直角三角形,由勾股定理求得OA的長度,然后利用圓的周長公式來求⊙O的周長.
解答:解:如圖,連接OA.

∵PA是⊙O的切線,
∴OA⊥AP,即∠OAP=90°.
又∵PO=26cm,PA=24cm,
∴根據(jù)勾股定理,得
OA===10cm,
∴⊙O的周長為:2π•OA=2π×10=20π(cm).
故選C.
點評:本題考查了切線的性質(zhì)和勾股定理.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是⊙O外一點,PA切⊙O于A,AB是⊙O的直徑,PB交⊙O于C,若PA=2cm,∠B=30°,求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶) 如圖,P是⊙O外一點,PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知:如圖,P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,BC∥OP交⊙O于點C.
(1)判斷直線PC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=2,sin
1
2
∠APC=
1
3
,求PC的長及點C到PA的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點,PA、PB切⊙O于點A、B,點C在優(yōu)弧AB上,若么P=68°,則∠ACB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點,PA和PB是⊙O的切線,A,B為切點,P O與AB交于點M,過M任作⊙O的弦CD.
求證:∠CPO=∠DPO.

查看答案和解析>>

同步練習(xí)冊答案