【題目】如圖,等邊△ABC的邊長(zhǎng)為10cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)E從點(diǎn)B出發(fā)沿AB的延長(zhǎng)線BF向右運(yùn)動(dòng),已知點(diǎn)D,E都以1cm/s的速度同時(shí)開始運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中DE與BC相交于點(diǎn)P,點(diǎn)D運(yùn)動(dòng)到點(diǎn)A后兩點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)△ADE是直角三角形時(shí),求D,E兩點(diǎn)運(yùn)動(dòng)的時(shí)間;
(2)求證:在運(yùn)動(dòng)過(guò)程中,點(diǎn)P始終是線段DE的中點(diǎn).
【答案】(1)s;(2)證明見(jiàn)解析
【解析】
(1)經(jīng)過(guò)分析當(dāng)△ADE是直角三角形時(shí),只有∠ADE=90°的情況,此時(shí)∠AED=30°.用運(yùn)動(dòng)時(shí)間t表示出AD和AE,根據(jù)30度直角三角形的性質(zhì)構(gòu)造關(guān)于t的方程即可求解;
(2)過(guò)D點(diǎn)作DK∥AB交BC于點(diǎn)K,證明△DKP≌△EBP即可說(shuō)明點(diǎn)P始終是線段DE的中點(diǎn).
(1)當(dāng)△ADE是直角三角形時(shí),只有∠ADE=90°的情況,
∵∠A=60°,
∴∠AED=30°,
∴AE=2AD,
設(shè)D點(diǎn)運(yùn)動(dòng)時(shí)間為t,則E點(diǎn)運(yùn)動(dòng)時(shí)間也為t,
∴AD=10﹣t,AE=10+t,
∴10+t=2(10﹣t),解得t=,
所以當(dāng)△ADE是直角三角形時(shí),D,E兩點(diǎn)運(yùn)動(dòng)的時(shí)間為秒;
(2)過(guò)點(diǎn)D作DK∥AB交BC于點(diǎn)K,
∵△ABC是等邊三角形,
∴∠C=∠CDK=∠CKD=60°,
∴CD=DK=CK,∠DKP=∠EBP=120°,
設(shè)D、E運(yùn)動(dòng)時(shí)間為t秒,則CD=BE=t,
在△DKP和△EBP中,
∴△DKP≌△EBP(AAS),
∴PD=PE,
所以P始終為DE中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為1個(gè)單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問(wèn)題:
(1)寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)畫出△ABC向右平移6個(gè)單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點(diǎn)P是射線AM上動(dòng)點(diǎn)(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),那么∠APB:∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=2,以AB為直徑的圓交BC于D,則圖中陰影部分的面積為( )
A.1
B.2
C.1+
D.2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車沿同一平直公路由地勻速行駛(中途不停留),前往終點(diǎn)地,甲、乙兩車之間的距離(千米)與甲車行駛的時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示。下列說(shuō)法:①甲、乙兩地相距210千米;②甲速度為60千米/小時(shí);③乙速度為120千米/小時(shí);④乙車共行駛小時(shí),其中正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】英國(guó)曼徹斯特大學(xué)的兩位科學(xué)家因?yàn)槌晒Φ貜氖蟹蛛x出石墨烯,榮獲了諾貝爾物理學(xué)獎(jiǎng).石墨烯目前是世上最薄卻也是最堅(jiān)硬的納米材料,同時(shí)還是導(dǎo)電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個(gè)數(shù)用科學(xué)記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com