【題目】如圖,在平面直角坐標(biāo)系xOy中,RtOCD的一邊OCx軸上,∠C90°,點(diǎn)D在第一象限,OC3,DC4,反比例函數(shù)的圖象經(jīng)過OD的中點(diǎn)A.

(1)求該反比例函數(shù)的表達(dá)式;

(2)若該反比例函數(shù)的圖象與RtOCD的另一邊DC交于點(diǎn)B,求過A、B兩點(diǎn)的直線的表達(dá)式.

【答案】1;(2y=-x3.

【解析】分析:(1)根據(jù)線段的中點(diǎn)坐標(biāo)的求法(線段中點(diǎn)的橫縱坐標(biāo)分別是線段2個(gè)端點(diǎn)的橫縱坐標(biāo)的和的一半)易得點(diǎn)A坐標(biāo),設(shè)出反比例函數(shù)的解析式,A坐標(biāo)代入即可;

(2)點(diǎn)B,D的橫坐標(biāo)相等,代入(1)中反比例函數(shù)的解析式中,求出點(diǎn)B的坐標(biāo),A、B的坐標(biāo)代入一次函數(shù)解析式,利用待定系數(shù)法求出函數(shù)解析式即可.

本題解析: (1)由題意,易得點(diǎn)A的坐標(biāo)是(1.5,2),則該反比例函數(shù)的表達(dá)式為y.

(2)x3代入y,得y1,則點(diǎn)B的坐標(biāo)是(31)

設(shè)過A、B兩點(diǎn)的直線的表達(dá)式為ykxb,

解得

則過A、B兩點(diǎn)的直線的表達(dá)式為y=-x3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)正方體的表面展開圖,請(qǐng)回答下列問題:

(1)與面B,C相對(duì)的面分別是   

2)若A=a3+a2b+3,B=a2b+a3C=a31,D=a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E,F分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),OBD的中點(diǎn),PO的延長(zhǎng)線交BC于點(diǎn)Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點(diǎn)E在AB上,點(diǎn)F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,求∠CDA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租車沿公路左右行駛,向左為正,向右為負(fù),某天從A地出發(fā)后到收工回家所走的路線如下:單位:千米,,,,,,,,

問收工時(shí)離出發(fā)點(diǎn)A多少千米?

若該出租車每千米耗油升,問從A地出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.

(1)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購(gòu)物合算?

(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤SCEF=2SABE , 其中結(jié)論正確的個(gè)數(shù)為( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,沿AC方向開山修建一條公路,為了加快施工進(jìn)度,要在小山的另一邊尋找點(diǎn)E同時(shí)施工,從AC上的一點(diǎn)B取∠ABD=150°,沿BD的方向前進(jìn),取∠BDE=60°,測(cè)得BD=520m,BC=80m,并且AC,BD和DE在同一平面內(nèi),那么公路CE段的長(zhǎng)度為(
A.180m
B.260 m
C.(260 ﹣80)m
D.(260 ﹣80)m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖B,E,C,F(xiàn), 四點(diǎn)在同一條直線上,EB=CF,DEF=ABC,添加以下哪一個(gè)條件不能判斷 ABC≌△DEF 的是 ( )

A. A=D B. DFAC C. AC=DF D. AB=DE

查看答案和解析>>

同步練習(xí)冊(cè)答案