【題目】如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿△ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
(1)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄?/span>∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.
(2)根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 ;
(3)如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角,則此三角形另兩個角的度數(shù)為 .
【答案】(1)∠B=3∠C;(2)∠B=n∠C;(3)15°,150°.
【解析】試題分析:(1)仔細(xì)分析題意根據(jù)折疊的性質(zhì)及“好角”的定義即可作出判斷;
(2)因為經(jīng)過三次折疊∠BAC是△ABC的好角,所以第三次折疊的 由 又 由此即可求得結(jié)果;
(3)因為最小角是15°是△ABC的好角,根據(jù)好角定義,則可設(shè)另兩角分別為(其中都是正整數(shù)),由題意得所以 再根據(jù)都是正整數(shù)可得 與是的整數(shù)因子,從而可以求得結(jié)果
試題解析:(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是△ABC的好角;
理由如下:小麗展示的情形二中,
∵沿∠BAC的平分線折疊,
∴
又∵將余下部分沿的平分線折疊,此時點與點C重合,
∴
∵ (外角定理),
∴∠B=2∠C;
故答案是:是;
(2)∠B=3∠C;
在△ABC中,沿∠BAC的平分線折疊,剪掉重復(fù)部分;將余下部分沿的平分線折疊,剪掉重復(fù)部分,將余下部分沿的平分線折疊,點與點C重合,則∠BAC是△ABC的好角.
證明如下:∵根據(jù)折疊的性質(zhì)知,
∴根據(jù)三角形的外角定理知,
∵根據(jù)四邊形的外角定理知,
根據(jù)三角形ABC的內(nèi)角和定理知,
∴∠B=3∠C;
由小麗展示的情形一知,當(dāng)∠B=∠C時,∠BAC是△ABC的好角;
由小麗展示的情形二知,當(dāng)∠B=2∠C時,∠BAC是△ABC的好角;
由小麗展示的情形三知,當(dāng)∠B=3∠C時,∠BAC是△ABC的好角;
故若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為∠B=n∠C;
故答案為:∠B=3∠C;∠B=n∠C
(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,
因為最小角是是△ABC的好角,
根據(jù)好角定義,則可設(shè)另兩角分別為 (其中m、n都是正整數(shù)).
由題意,得所以m(n+1)=11
因為m、n都是正整數(shù),所以m與n+1是 的整數(shù)因子,
因此有:
所以m=1,n=10.
所以
所以該三角形的另外兩個角的度數(shù)分別為:15°,150°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把正六邊形對角線的交點稱為它的中心,正六邊形的頂點及它的中心稱作特征點,如圖(1)有六個頂點和一個中心點,因此共有7個特征點,照圖(1)的方式繼續(xù)排列正六邊形,使得相鄰兩個正六邊形的一邊重合,這樣得到圖(2),圖(3)…
觀察以上圖形得到表:
圖形的名稱 | 特征點的個數(shù) |
圖1 | 7 |
圖2 | 12 |
… | … |
(1)第n個圖形的特征點有多少個?
(2)第100個圖形的特征點有多少個?
(3)第幾個圖形有2017個特征點?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的倍,購進數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進價是多少元?
(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料
小明遇到這樣一個問題:求計算所得多項式的一次項系數(shù).
小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.
他決定從簡單情況開始,先找所得多項式中的一次項系數(shù).通過觀察發(fā)現(xiàn):
也就是說,只需用中的一次項系數(shù)1乘以中的常數(shù)項3,再用中的常數(shù)項2乘以中的一次項系數(shù)2,兩個積相加,即可得到一次項系數(shù).
延續(xù)上面的方法,求計算所得多項式的一次項系數(shù).可以先用的一次項系數(shù)1, 的常數(shù)項3, 的常數(shù)項4,相乘得到12;再用的一次項系數(shù)2, 的常數(shù)項2, 的常數(shù)項4,相乘得到16;然后用的一次項系數(shù)3, 的常數(shù)項2, 的常數(shù)項3,相乘得到18.最后將12,16,18相加,得到的一次項系數(shù)為46.
參考小明思考問題的方法,解決下列問題:
(1)計算所得多項式的一次項系數(shù)為 .
(2)計算所得多項式的一次項系數(shù)為 .
(3)若計算所得多項式的一次項系數(shù)為0,則=_________.
(4)若是的一個因式,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和同桌小聰在課后復(fù)習(xí)時,對下面的一道思考題進行了認(rèn)真的探索.
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時點B到墻AC的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動________米.
解完【思考題】后,小聰提出了如下兩個問題:
(1)在【思考題】中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
(2)在【思考題】中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是一個三角形的紙片,點D,E分別是△ABC邊AB,AC上的兩點.
(1)如圖①,如果沿直線DE折疊,則∠BDA′與∠A的關(guān)系是____________;
(2)如果折成圖②的形狀,猜想∠BDA′,∠CEA′和∠A的關(guān)系,并說明理由;
(3)如果折成圖③的形狀,猜想∠BDA′,∠CEA′和∠A的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
解答“已知,且,,確定的取值范圍”有如下解,
解:∵,
∴.
又∵,
∴.
∴.
又∵,
∴,①
同理得:.②
由①②得.
∴的取值范圍是.
請按照上述方法,完成下列問題:
()已知,且,,求的取值范圍.
()已知,,若,且,求得取值范圍(結(jié)果用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ABC的中線AD、BE相交于點F,下列結(jié)論正確的有 ( )
①S△ABD=S△DCA;② S△AEF=S△BDF;③S四邊形EFDC=2S△AEF;④S△ABC=3S△ABF
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com