【題目】黑板上寫有1,2,3,201920202020個自然數(shù),對它們進行操作,每次操作規(guī)則如下:擦掉寫在黑板上的三個數(shù)后,再添寫上所擦掉三個數(shù)之和的個位數(shù)字,例如:擦掉5,132010后,添加上8;若再擦掉8,838,添上4,等等.如果經(jīng)過1004次操作后,發(fā)現(xiàn)黑板上剩下兩個數(shù),一個是29,求另一個數(shù).

【答案】1

【解析】

因為新添的數(shù)字就是所擦三數(shù)之和的個位數(shù)字,所以這2020個自然數(shù)的個位數(shù)字的和不變,又因為其它數(shù)都擦掉了,只余29和另一個數(shù),所以另一個數(shù)就是擦掉的三數(shù)之和的個位數(shù),從而得結(jié)論.

解:

∴這2020個自然數(shù)的和的個位數(shù)為0,

∵其它數(shù)都擦掉了,只余29和另一個數(shù),

∴另一個數(shù)是擦掉的三個數(shù)之和的個位數(shù),必小于10,且與29之和的個位數(shù)為0,

∴另一個數(shù)為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67tan48°≈1.11,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、B兩點,與x軸交于點C,與y軸交于點E,其中

求該一次函數(shù)和反比例函數(shù)的解析式;

若點Dx軸正半軸上一點,且,連接OB、BD,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )

A. AB=24m B. MNAB

C. CMN∽△CAB D. CM:MA=1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖7-①,圖7-②,圖7-③,圖7-④,,是用圍棋棋子按照某種規(guī)律擺成的一行字,按照這種規(guī)律,第5字中的棋子個數(shù)是________,第字中的棋子個數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×5的網(wǎng)格中,最小正方形的邊長為1,A,B,C,D均為格點(最小正方形的頂點).

1)如圖1,畫出所有以AB為一邊且與ABC全等的格點三角形.

2)如圖2,在線段AB上畫出一點P,使CP+PD最小,其最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查根據(jù)調(diào)在結(jié)果,把學(xué)生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

這次調(diào)查一共抽取了多少名學(xué)生?

請將條形統(tǒng)計圖補充完整;

若該校有1800名學(xué)生,現(xiàn)要對安全意識為淡薄”、“一般的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強化安全教育的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AC8,AB10,ABC的面積為30,AD平分∠BAC,F、E分別為ACAD上兩動點,連接CEEF,則CEEF的最小值為_______

查看答案和解析>>

同步練習(xí)冊答案