【題目】我們規(guī)定,三角形任意兩邊的“廣益值”等于第三邊上的中線和這邊一半的平方差.如圖1,在中,是邊上的中線,與的“廣益值”就等于的值,可記為
(1)在中,若,,求的值.
(2)如圖2,在中,,,求,的值.
(3)如圖3,在中,是邊上的中線,,,,求和的長(zhǎng).
【答案】(1)AC=9;(2)ABAC=-72,BABC=216;(3)BC=2OC=2,AB=10.
【解析】
(1)在Rt中,根據(jù)勾股定理和新定義可得AO2-OC2=81=AC2;
(2)①先利用含30°的直角三角形的性質(zhì)求出AO=2,OB=,再用新定義即可得出結(jié)論;
②先構(gòu)造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定義即可得出結(jié)論;
(3)作BD⊥CD,構(gòu)造直角三角形BCD,根據(jù)三角形面積關(guān)系求出BD,根據(jù)新定義和勾股定理逆定理得出三角形AOD是直角三角形,根據(jù)中線性質(zhì)得出OA的長(zhǎng)度,根據(jù)勾股定理求出OC,從而得出BC,再根據(jù)勾股定理求出CD,再求出AD,再運(yùn)用勾股定理求出AB.
(1)已知如圖:AO為BC上的中線,
在Rt中,
AO2-OC2=AC2
因?yàn)?/span>
所以AO2-OC2=81
所以AC2=81
所以AC=9.
(2)①如圖2,取BC的中點(diǎn)D,連接AO,∵AB=AC,∴AO⊥BC,
在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,
在Rt△AOB中,AB=12,∠ABC=30°,∴AO=6,OB==,
∴ABAC=AO2﹣BO2=36﹣108=﹣72,
②取AC的中點(diǎn)D,連接BD,∴AD=CD=AC=6,過點(diǎn)B作BE⊥AC交CA的延長(zhǎng)線于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,
∵AB=12,∴AE=6,BE=,
∴DE=AD+AE=12,
在Rt△BED中,根據(jù)勾股定理得,BD=
∴BABC=BD2﹣CD2=216;
(3)作BD⊥CD,
因?yàn)?/span>,,
所以BD=2,
因?yàn)?/span>,是邊上的中線,
所以AO2-OC2=-64,
所以OC2-AO2=64,
由因?yàn)?/span>AC2=82=64,
所以OC2-AO2= AC2
所以∠OAC=90°
所以OA=
所以OC=
所以BC=2OC=2,
在Rt△BCD中,
CD=
所以AD=CD-AC=16-8=8
所以AB=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高人們對(duì)飲水品質(zhì)的需求越來(lái)越高,岳陽(yáng)市槐蔭公司根據(jù)市場(chǎng)需求代理,兩種型號(hào)的凈水器,每臺(tái)型凈水器比每臺(tái)型凈水器進(jìn)價(jià)多元,用萬(wàn)元購(gòu)進(jìn)型凈水器與用萬(wàn)元購(gòu)進(jìn)型凈水器的數(shù)量相等
(1)求每臺(tái)型、型凈水器的進(jìn)價(jià)各是多少元?
(2)槐蔭公司計(jì)劃購(gòu)進(jìn),兩種型號(hào)的共臺(tái)進(jìn)行試銷,,購(gòu)買資金不超過萬(wàn)元.試求最多可以購(gòu)買型凈水器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全社會(huì)對(duì)空氣污染問題越來(lái)越重視,空氣凈化器的銷量也大增,商社電器從廠家購(gòu)進(jìn)了,兩種型號(hào)的空氣凈化器,已知一臺(tái)型空氣凈化器的進(jìn)價(jià)比一臺(tái)型空氣凈化器的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)型空氣凈化器和用6000元購(gòu)進(jìn)型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)型空氣凈化器和一臺(tái)型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷售過程中,型空氣凈化器因?yàn)閮艋芰?qiáng),噪聲小而更受消費(fèi)者的歡迎.商社電器計(jì)劃型凈化器的進(jìn)貨量不少于20臺(tái)且是型凈化器進(jìn)貨量的三倍,在總進(jìn)貨款不超過5萬(wàn)元的前提下,試問有多少種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC是圓的內(nèi)接三角形,∠BAC與∠ABC的角平分線AE、BE相交于點(diǎn)E,延長(zhǎng)AE交圓于點(diǎn)D,連接BD、DC,且∠BCA=60°.
(1)求證:△BED為等邊三角形;
(2)若∠ADC=30°,⊙O的半徑為2,求BD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于點(diǎn)E,點(diǎn)F是AC上的動(dòng)點(diǎn),BD=DF
(1)求證:BE=FC;
(2)若∠B=30°,DC=2,此時(shí),求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(3,0),B(﹣5,0),C(0,﹣5)三點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求此拋物線的解析式;
(2)把拋物線y=ax2+bx+c(a≠0)向上平移個(gè)單位長(zhǎng)度,再向左平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;
(3)設(shè)點(diǎn)P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形紙片ABCD中,AB=12厘米,折疊紙片,使得點(diǎn)A落在CD邊上的點(diǎn)P處,折痕為MN,點(diǎn)M、N分別在邊AD、AB上,當(dāng)點(diǎn)P恰好是CD邊的中點(diǎn)時(shí),點(diǎn)N與點(diǎn)B重合,若在折疊過程中NP=NC,則PD=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com