(1)如圖1,若D、E分別是△ABC的邊AB、AC上的中點(diǎn),我們把這樣的線段DE稱為是三角形的中位線.你知道中位線DE與BC之間有什么關(guān)系嗎?請(qǐng)同學(xué)們大膽地猜想一下,并證明你的結(jié)論.
(2)如示意圖2,小華家(點(diǎn)A處)和公路(l)之間豎立著一塊35m長(zhǎng)且平行于公路的巨型廣告牌(DE).廣告牌擋住了小華的視線,請(qǐng)?jiān)趫D中畫出視點(diǎn)A的盲區(qū),并將盲區(qū)內(nèi)的那段公路計(jì)為BC.一輛以60km/h勻速行駛的汽車經(jīng)過(guò)公路段的時(shí)間是3s,已知廣告牌和公路的距離是40m,求小華家到公路的距離(精確到1m).
(1)DEBC,DE=
1
2
BC
證明:延長(zhǎng)DE到F,使EF=DE,連接CF.
∵AE=CE,∠AED=∠CEF,
∴△ADE≌△CEF.
∴AD=CF,∠ADE=∠CFE.
∴ADCF.
∵AD=BD,
∴BD=CF.
∴四邊形BCFD是平行四邊形.
∴DEBC,DE=BC.
故答案為三角形的中位線平行于第三邊且等于第三邊的一半

(2)過(guò)A作AE⊥BC于E,交DE于F
∵DEBC則△ADE△ABC,
設(shè)AE=x則
x-40
x
=
35
60000
3600
×40
,
∴x=
400
3
(7分)
答:小華家到公路的距離是133米;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一次數(shù)學(xué)活動(dòng)課,老師組織學(xué)生到野外測(cè)量一個(gè)池塘的寬度(即圖中A、B間的距離).在討論探究測(cè)量方案時(shí),同學(xué)們發(fā)現(xiàn)有多種方法,現(xiàn)請(qǐng)你根據(jù)所學(xué)知識(shí),設(shè)計(jì)出兩種測(cè)量方案,要求畫出測(cè)量示意圖,并簡(jiǎn)要說(shuō)明測(cè)量方法和計(jì)算依據(jù).
例案:在A處測(cè)出∠BAE=90°,并在射線AE上的適當(dāng)位置取點(diǎn)C,量出AC,BC的長(zhǎng)度;
運(yùn)用勾股定理,得AB=
BC2-AC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是一山谷的橫斷面示意圖,寬AA′為15m,用曲尺(兩直尺相交成直角)從山谷兩側(cè)測(cè)量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(點(diǎn)A,O,O′A′在同一條水平線上),求該山谷的深h.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在同一時(shí)刻,小明測(cè)得他的影長(zhǎng)為1米,距他不遠(yuǎn)處的一棵檳榔樹的影長(zhǎng)為5米,已知小明的身高為1.5米,則這棵檳榔樹的高為( 。
A.6米B.6.5米C.7米D.7.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,路燈S距地面4米,身高1.6米的小明從距離路燈的底部(點(diǎn)O)6米的點(diǎn)A處,沿DA所在的直線行走6米到達(dá)點(diǎn)B時(shí),人影的長(zhǎng)度增加了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明和幾位同學(xué)做手的影子游戲時(shí),發(fā)現(xiàn)對(duì)于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長(zhǎng)度計(jì)算光源到物體的位置.于是,他們做了以下嘗試.

(1)如圖1,垂直于地面放置的正方形框架ABCD,邊長(zhǎng)AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長(zhǎng)度和為6cm.那么燈泡離地面的高度為______.
(2)不改變圖1中燈泡的高度,將兩個(gè)邊長(zhǎng)為30cm的正方形框架按圖2擺放,請(qǐng)計(jì)算此時(shí)橫向影子A′B,D′C的長(zhǎng)度和為多少?
(3)有n個(gè)邊長(zhǎng)為a的正方形按圖3擺放,測(cè)得橫向影子A′B,D′C的長(zhǎng)度和為b,求燈泡離地面的距離.(寫出解題過(guò)程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)B的坐標(biāo)為(4,3).
(1)直接寫出A、C兩點(diǎn)的坐標(biāo);
(2)平行于對(duì)角線AC的直線m從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線m與矩形OABC的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動(dòng)的時(shí)間為t(秒).
①若MN=
1
2
AC,求t的值;
②設(shè)△OMN的面積為S,當(dāng)t為何值時(shí),S=
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直角坐標(biāo)平面內(nèi),一光源位于A(0,5)處,線段CD⊥x軸于D點(diǎn),C坐標(biāo)為(3,2),則CD在x軸上的影長(zhǎng)為______,點(diǎn)C的影子的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在同一時(shí)刻物體的高度與它的影長(zhǎng)成正比例.在某一時(shí)刻,玉蘭樓的頂端點(diǎn)A的影子落在明珠樓點(diǎn)B上,測(cè)得BD的高為12米,樓距CD為70米.同一時(shí)刻有人測(cè)得高為2米的竹竿的影長(zhǎng)為3.5米.求玉蘭樓的高度是多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案