如圖,拋物線y=x2-x+a與x軸交于點A,B,與y軸交于點C,其頂點在直線y=-2x上.
(1)求a的值;
(2)求A,B的坐標(biāo);
(3)以AC,CB為一組鄰邊作□ACBD,則點D關(guān)于x軸的對稱點是否在該拋物線上?請說明理由.
解:(1)拋物線的頂點坐標(biāo)為(1,a-) ∵頂點在直線y=-2x上,∴a-=-2.即a=- (2)由(1)知,拋物線表達式為y=x2-x-, 令y=0,得x2-x-=0.解之得:x1=-1,x3=3. ∴A的坐標(biāo)(-1,0),B的坐標(biāo)(3,0); (3)∵四邊形ABCD是平行四邊形, ∴點C,D關(guān)于對角線交點(1,0)對稱 又∵點是點D關(guān)于x軸的對稱點, 點C,關(guān)于拋物線的對稱軸對稱. ∴D在拋物線上. 分析:(1)利用在曲線上點的坐標(biāo)滿足方程,直接求解. (2)A,B兩點都在X軸上,所以只要令y=0可求. (3)利用中心對稱,軸對稱可證.也可這樣證:由□ACBD可得對角線中點坐標(biāo)(-1,0).點C,D關(guān)于對角線交點(1,0)對稱,可得D點坐標(biāo)(2,).由D,關(guān)于x軸對稱,可得點坐標(biāo)(2,-).把x=2代入函數(shù)關(guān)系式得y=×22-2-=-.因此在拋物線上. |
科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學(xué)試卷(帶解析) 題型:填空題
如圖,拋物線y=x2-x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當(dāng)運動到P,Q兩點重合時同時停止運動. 設(shè)點P的橫坐標(biāo)為t .
(1)點Q的橫坐標(biāo)是 (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,拋物線y=x2-x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當(dāng)運動到P,Q兩點重合時同時停止運動. 設(shè)點P的橫坐標(biāo)為t .
(1)點Q的橫坐標(biāo)是 (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省儀征市九年級上學(xué)期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線y=x2+bx+c與x軸交于點A、B(點A在點B左側(cè)),與y軸交于點C(0,-3),且拋物線的對稱軸是直線x=1.
(1)求b的值;
(2)點E是y軸上一動點,CE的垂直平分線交y軸于點F,交拋物線于P、Q兩點,且點P在第三象限.當(dāng)線段PQ = AB時,求點E的坐標(biāo);
(3)若點M在射線CA上運動,過點M作MN⊥y軸,垂足為N,以M為圓心,MN為半徑作⊙M,當(dāng)⊙M與x軸相切時,求⊙M的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省蘇州工業(yè)園區(qū)九年級上學(xué)期期中測試數(shù)學(xué)卷 題型:選擇題
如圖,拋物線y=x2+1與雙曲線y=的交點A的橫坐標(biāo)是1,則關(guān)于x的不等式+x2+1 < 0的解集是( ▲ )
A.x>1 B.x<−1 C.0<x<1 D.−1<x<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com