【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BC,如果點(diǎn)F是邊AD上的點(diǎn),那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

【答案】C

【解析】試題分析:A、當(dāng)DF=BE時(shí),有平行四邊形的性質(zhì)可得:AB=CD∠B=∠D,利用SAS可判定△CDF≌△ABEB、當(dāng)AF=CE時(shí),有平行四邊形的性質(zhì)可得:BE=DF,AB=CD∠B=∠D,利用SAS可判定△CDF≌△ABEC、當(dāng)CF=AE時(shí),有平行四邊形的性質(zhì)可得:AB=CD,∠B=∠D,利用SSA不能判定△CDF≌△ABE;D、當(dāng)CF∥AE時(shí),有平行四邊形的性質(zhì)可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE.故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=15,點(diǎn)E是AD邊上一點(diǎn),連接BE,把△ABE沿BE折疊,使點(diǎn)A落在點(diǎn)A′處,點(diǎn)F是CD邊上一點(diǎn),連接EF,把△DEF沿EF折疊,使點(diǎn)D落在直線EA′上的點(diǎn)D′處,當(dāng)點(diǎn)D′落在BC邊上時(shí),AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請(qǐng)你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,AB表示A點(diǎn)和B點(diǎn)之間的距離,a,b滿足|a+2|+(b+3a)2=0.

(1)A,B兩點(diǎn)之間的距離;

(2)若在線段AB上存在一點(diǎn)C,AC=2BC,C點(diǎn)表示的數(shù);

(3)若在原點(diǎn)O處放一個(gè)擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí),另一個(gè)小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略小球的大小,可看做一個(gè)點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng).

設(shè)運(yùn)動(dòng)時(shí)間為t.

甲球到原點(diǎn)的距離為_____,乙球到原點(diǎn)的距離為_________;(用含t的代數(shù)式表示)

求甲乙兩小球到原點(diǎn)距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,E是BA延長線上一點(diǎn),AB=AE,連接CE交AD于點(diǎn)F,若CF平分∠BCD,AB=3,則BC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點(diǎn)A1∠A1BC∠A1CD的平分線相交于點(diǎn)A2,依此類推,∠A4BC∠A4CD的平分線相交于點(diǎn)A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBO、CO分別平分∠BAC、ABC、ACB,ODBC,試說明:∠1=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前正值草莓銷售季節(jié),小李用2000元在安塞區(qū)草莓基地購進(jìn)草莓若干進(jìn)行銷售,由于銷售狀況良好,他又拿出6000元資金購進(jìn)該種草莓,但這次的進(jìn)貨價(jià)比第一次的進(jìn)貨價(jià)提高了20%,購進(jìn)草莓?dāng)?shù)量比第一次的2倍還多20千克。求該種草莓第一次進(jìn)價(jià)是每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE∠BOC內(nèi)部,∠BOE∠EOC,∠DOE70°,求∠EOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案