【題目】如圖,一艘船由A港沿北偏東65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.
【答案】(90+30)km.
【解析】
過B作BE⊥AC于E,在Rt△ABE中,由∠ABE=45°,AB=,可得 AE=BE=AB=90km,在Rt△CBE中,由∠ACB=60°,可得CE=BE=30km,繼而可得AC=AE+CE=90+30.
解:根據題意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90,
過B作BE⊥AC于E,
∴∠AEB=∠CEB=90°,
在Rt△ABE中,∵∠ABE=45°,AB=,
∴AE=BE=AB=90km,
在Rt△CBE中,∵∠ACB=60°,
∴CE=BE=30km,
∴AC=AE+CE=90+30,
∴A,C兩港之間的距離為(90+30)km.
科目:初中數學 來源: 題型:
【題目】廊橋是我國古老的文化遺產.如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數表達式為,為保護廊橋的安全,在該拋物線上距水面高為8米的點、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中,每個小正方形的邊長均為1,線段AB的端點均在小正方形的頂點上,請按要求畫出圖形并計算.
(1)以線段AB為一腰的等腰△ABC,點C在小正方形的頂點上,且S△ABC=6;
(2)以BC為對角線作平行四邊形BDCE,點D,E均在小正方形的頂點上,且∠ABD=45°;
(3)連接DE,請直接寫出線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,過點(0,1)和(﹣1,0),給出以下結論:①ab<0;②4a+c<1+b2;③0<c+b+a<2;④0<b<2;⑤當x>﹣1時,y>0;⑥8a+7b+2c﹣9<0其中正確結論的個數是( 。
A.6B.5C.4D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數字之和為奇數的概率;
(2)若取出的兩張卡片數字之和為奇數,則甲勝;取出的兩張卡片數字之和為偶數,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月國際風箏節(jié)期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數關系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小左同學想利用影長測量學校旗桿的高度,如圖,她在某一時刻立一長度為1米的標桿,測得其影長為米,同時旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請幫小左同學算出學校旗桿的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知平面直角坐標系xOy(如圖1),一次函數的圖像與y軸交于點A,點M在正比例函數的圖像上,且MO=MA.二次函數y=x2+bx+c的圖像經過點A、M.
(1)求線段AM的長;
(2)求這個二次函數的解析式;
(3)如果點B在y軸上,且位于點A下方,點C在上述二次函數的圖像上,點D在一次函數的圖像上,且四邊形ABCD是菱形,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com