【題目】用適當(dāng)方法解下列方程:
(1)
(x+1)2=25;
(2)x2+2x﹣1=0.

【答案】
(1)

解:∵(x+1)2=100,

∴x+1=10或x+1=﹣10,

解得:x=9或x=﹣11


(2)

解:∵x2+2x=1,

∴x2+2x+1=1+1,即(x+1)2=2,

則x+1=± ,

∴x=﹣1


【解析】(1)利用直接開(kāi)平方法求解可得;(2)配方法求解可得.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直接開(kāi)平方法和配方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想.如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量.b、c相等都為零,等根是零不要忘.b、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方;左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒(méi)問(wèn)題.左邊分解右合并,直接開(kāi)方去解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義計(jì)算“☆”,對(duì)于兩個(gè)有理數(shù)a,b,有a☆b=a+b﹣ab,例如:﹣3☆2=5.則(﹣2☆3)☆0=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠甲、乙兩個(gè)車(chē)間同時(shí)開(kāi)始生產(chǎn)某種產(chǎn)品,產(chǎn)品總?cè)蝿?wù)量為m件,開(kāi)始甲、乙兩個(gè)車(chē)間工作效率相同.乙車(chē)間在生產(chǎn)一段時(shí)間后,停止生產(chǎn),更換新設(shè)備,之后工作效率提高.甲車(chē)間始終按原工作效率生產(chǎn).甲、乙兩車(chē)間生產(chǎn)的產(chǎn)品總件數(shù)y與甲的生產(chǎn)時(shí)間x(時(shí))的函數(shù)圖象如圖所示.

(1)甲車(chē)間每小時(shí)生產(chǎn)產(chǎn)品 件,a=

(2)求乙車(chē)間更換新設(shè)備之后y與x之間的函數(shù)關(guān)系式,并求m的值.

(3)若乙車(chē)間在開(kāi)始更換新設(shè)備時(shí),增加兩名工作人員,這樣可便更換設(shè)備時(shí)間減少0.5小時(shí),并且更換后工作效率提高到原來(lái)的2倍,那么兩個(gè)車(chē)間完成原任務(wù)量需幾小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點(diǎn)A(-2,0),與y軸交于點(diǎn)C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)B(m,n),連結(jié)OB.若SAOB=6,SBOC=2.

(1)求一次函數(shù)的表達(dá)式;

(2)求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形ABCD如圖1作如下劃分

1次劃分分別連接正方形ABCD對(duì)邊的中點(diǎn)如圖2),得線(xiàn)段HFEG,它們交于點(diǎn)M,此時(shí)圖2中共有5個(gè)正方形;

2次劃分將圖2左上角正方形AEMH再作劃分,得圖3,則圖3中共有9個(gè)正方形

1若每次都把左上角的正方形一次劃分下去,則第100次劃分后圖中共有______個(gè)正方形;

2繼續(xù)劃分下去第幾次劃分后能有805個(gè)正方形?寫(xiě)出計(jì)算過(guò)程

3能否將正方形性ABCD劃分成有2018個(gè)正方形的圖形如果能,請(qǐng)算出是第幾次劃分如果不能,需說(shuō)明理由

4如果設(shè)原正方形的邊長(zhǎng)為1通過(guò)不斷地分割該面積為1的正方形,并把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),可以很容易得到一些計(jì)算結(jié)果,試著探究求出下面表達(dá)式的結(jié)果吧

計(jì)算.直接寫(xiě)出答案即可

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算結(jié)果正確的是( )
A.a8÷a4=a2
B.a2a3=a6
C.(a32=a6
D.(﹣2a23=8a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備.市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少元;

(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a(a>10)個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花發(fā)費(fèi)用;

(3)在(2)的條件下,若a=60,假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到甲、乙哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各對(duì)數(shù)中,互為相反數(shù)的是( 。

A.﹣(﹣3)和++3B.﹣(+3)和+(﹣3

C.﹣(+3)和++3D.﹣(﹣3)和3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,王老師隨機(jī)抽查部分學(xué)生,并對(duì)其暑假期間的課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成如圖所示但不完整的統(tǒng)計(jì)圖.已知抽查的學(xué)生在暑假期間閱讀量為2本的人數(shù)占抽查總?cè)藬?shù)的20%,根據(jù)所給出信息,解答下列問(wèn)題:

(1)求被抽查學(xué)生人數(shù)并直接寫(xiě)出被抽查學(xué)生課外閱讀量的中位數(shù);

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若規(guī)定:假期閱讀3本及3本以上課外書(shū)者為完成假期作業(yè),據(jù)此估計(jì)該校1500名學(xué)生中,完成假期作業(yè)的有多少名學(xué)生?

查看答案和解析>>

同步練習(xí)冊(cè)答案