已知△ABC的頂點(diǎn)A的坐標(biāo)為A(x,y),把△ABC整體平移行后得點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為A1(x-3,y+4),則B(-4,-5)對(duì)應(yīng)點(diǎn)的B1的坐標(biāo)為(  )
分析:根據(jù)點(diǎn)A與A1的坐標(biāo)得出平移變換的規(guī)律,再根據(jù)此規(guī)律解答即可.
解答:解:∵點(diǎn)A(x,y)的對(duì)應(yīng)點(diǎn)為A1(x-3,y+4),
∴平移變換規(guī)律為向左平移3個(gè)單位,向上平移4個(gè)單位,
∴B(-4,-5)對(duì)應(yīng)點(diǎn)的B1的坐標(biāo)為(-7,-1).
故選C.
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形變化-平移,根據(jù)對(duì)應(yīng)點(diǎn)確定出平移規(guī)律是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,已知△ABC的頂點(diǎn)B的坐標(biāo)是(2,1),將△ABC向左平移兩個(gè)單位后,點(diǎn)B平移到B1,則B1的坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在平面直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)A(0,4),B(-2,0),C(2,0).
(1)寫出△DEF的頂點(diǎn)坐標(biāo);
(2)將△ABC變換至△DEF要通過什么變換?請(qǐng)說明;
(3)畫出△ABC關(guān)于x軸的軸反射圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,已知△ABC的頂點(diǎn)B的坐標(biāo)是(2,1),將△ABC向左平移兩個(gè)單位后,點(diǎn)B平移到B1,則
(1)寫出B1點(diǎn)的坐標(biāo);
(2)畫出平移后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的頂點(diǎn)A,B,C的坐標(biāo)分別是A(1,-1),B(1,-5),C(4,-5).
(1)將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,并直接寫出頂點(diǎn)A1、B1、C1的坐標(biāo);
(2)作出△ABC關(guān)于點(diǎn)P(0,-2)成中心對(duì)稱的圖形△A2B2C2,并直接寫出頂點(diǎn)A2、B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的頂點(diǎn)B、C為定點(diǎn),A為動(dòng)點(diǎn)(不在直線BC上),B′是點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn),C′是點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn),連接BC′、CB′、BB′、CC′.
(1)猜想線段BC′與CB′的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)A運(yùn)動(dòng)到怎樣的位置時(shí),四邊形BCB′C′為菱形?這樣的位置有幾個(gè)?請(qǐng)用語言對(duì)這樣的位置進(jìn)行描述(不用證明);
(3)當(dāng)點(diǎn)A在線段BC的垂直平分線(BC的中點(diǎn)及到BC的距離為
3
BC
6
的點(diǎn)除外)精英家教網(wǎng)上運(yùn)動(dòng)時(shí),判斷以點(diǎn)B、C、B′、C′為頂點(diǎn)的四邊形的形狀,畫出相應(yīng)的示意圖.(不用證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案