如圖,在一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點B與點A重合,折痕為DE,則CD長為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:由翻折易得DB=AD,在直角三角形ACD中,利用勾股定理即可求得CD長.
解答:由題意得DB=AD;
設CD=xcm,則
AD=DB=(8-x)cm,
∵∠C=90°,
∴AD2-CD2=AC2(8-x)2-x2=36,
解得x=
即CD=cm.
故選A.
點評:本題主要考查了折疊問題和勾股定理的綜合運用.本題中得到BD=AD是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.
精英家教網
小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決.
(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段FG的長度;
(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.

小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.

      

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.

小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省汕頭市植英中學八年級第一學期期末考試試數(shù)學卷 題型:解答題

如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.

小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在一張長方形紙條上任意畫一條截線AB,將紙條沿截線AB折疊,所得到△ABC一定是                                                                【    】

A.等腰三角形     B.直角三角形        C.等邊三角        D.等腰直角三角形

查看答案和解析>>

同步練習冊答案