精英家教網 > 初中數學 > 題目詳情
(2008•煙臺)如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點.將拋物線L1向右平移2個單位后得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.

【答案】分析:(1)由于是平移,所以拋物線開口方向和開口大小不變.先求出L1與x軸的交點,再求出L2與x軸的交點,即可根據交點式求出拋物線解析式;
(2)由于是平移,根據平移的性質,連接各組對應點的線段平行且相等,故存在符合條件的點N;
(3)先設出L1上的點(x1,y1),再根據中心對稱的定義求出其對稱點(-x1,-y1),再將(-x1,-y1)代入函數L2解析式,成立則在圖象上,不成立則不在圖象上.
解答:解:(1)令y=0,得-x2-2x+3=0,
∴x1=-3,x2=1,
∴A(-3,0),B(1,0),
∵拋物線L1向右平移2個單位得拋物線L2,
∴C(-1,0),D(3,0),a=-1,
∴拋物線L2為y=-(x+1)(x-3),即y=-x2+2x+3.

(2)存在.令x=0,得y=3.
∴M(0,3),
∵拋物線L2是L1向右平移2個單位得到的,
∴點N(2,3)在L2上,且MN=2,MN∥AC.
又∵AC=2,
∴MN=AC.
∴四邊形ACNM為平行四邊形.
同理,L1上的點N′(-2,3)滿足N′M∥AC,N′M=AC.
∴四邊形ACMN′是平行四邊形.
∴N(2,3)或N′(-2,3)即為所求.

(3)設點P(x1,y1)是L1上任意一點(y1≠0),
則點P關于原點的對稱點Q(-x1,-y1),且y1=-x12-2x1+3,
將點Q的橫坐標代入L2,得yQ=-x12-2x1+3=y1≠-y1,
∴點Q不在拋物線L2上.
點評:本題結合二次函數的圖象和性質,考查了平移、對稱和動點問題,涉及問題較廣泛,有一定難度,是一道好題.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2008•煙臺)如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點.將拋物線L1向右平移2個單位后得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2008•煙臺)如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個動點,且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由;
(3)設△BEF的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省泰州市姜堰市溱潼實驗中學中考數學模擬試卷(解析版) 題型:選擇題

(2008•煙臺)如圖,在Rt△ABC內有邊長分別為a,b,c的三個正方形,則a,b,c滿足的關系式是( )

A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c

查看答案和解析>>

科目:初中數學 來源:2009年山東省泰安市中考數學模擬試卷(2)(解析版) 題型:解答題

(2008•煙臺)如圖,AB是⊙O的直徑,且點C為⊙O上的一點,∠BAC=30°,M是OA上一點,過M作AB的垂線交AC于點N,交BC的延長線于點E,直線CF交EN于點F,且∠ECF=∠E.
(1)證明:CF是⊙O的切線;
(2)設⊙O的半徑為1,且AC=CE,求MO的長.

查看答案和解析>>

同步練習冊答案