【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點.
(1)求證:∠B=∠ACD.
(2)已知點E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關系,并請說明理由.
【答案】
(1)
證明:∵∠ACB=∠DCO=90°,
∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,
即∠ACD=∠OCB,
又∵點O是AB的中點,
∴OC=OB,
∴∠OCB=∠B,
∴∠ACD=∠B
(2)
解:(i)∵BC2=ABBE,
∴ ,
∵∠B=∠B,
∴△ABC∽△CBE,
∴∠ACB=∠CEB=90°,
∵∠ACD=∠B,
∴tan∠ACD=tan∠B= ,
設BE=4x,CE=3x,
由勾股定理可知:BE2+CE2=BC2,
∴(4x)2+(3x)2=100,
∴解得x=2 ,
∴CE=6 ;
(ii)過點A作AF⊥CD于點F,
∵∠CEB=90°,
∴∠B+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠B=∠ACE,
∵∠ACD=∠B,
∴∠ACD=∠ACE,
∴CA平分∠DCE,
∵AF⊥CE,AE⊥CE,
∴AF=AE,
∴直線CD與⊙A相切
【解析】(1)因為∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因為點O是Rt△ACB中斜邊AB的中點,所以OC=OB,所以∠OCB=∠B,利用等量代換可知∠ACD=∠B;(2)(i)因為BC2=ABBE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因為tan∠ACD=tan∠B,利用勾股定理即可求出CE的值;
(ii)過點A作AF⊥CD于點F,易證∠DCA=∠ACE,所以CA是∠DCE的平分線,所以AF=AE,所以直線CD與⊙A相切.本題考查圓的綜合問題,涉及等量代換,勾股定理,相似三角形的判定與性質,銳角三角函數(shù)等知識,知識點較綜合,需要學生靈活運用所學知識解決問題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個正方體的平面展開圖,標注了A字母的是正方體的正面,如果正方體的左面與右面標注的式子相等.
(1)求x的值.
(2)求正方體的上面和底面的數(shù)字和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在AB邊上,點D到點A的距離與點D到點C的距離相等.
(1)利用尺規(guī)作圖作出點D,不寫作法但保留作圖痕跡.
(2)若△ABC的底邊長5,周長為21,求△BCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C是數(shù)軸上的三點,O是原點,BO=3,AB=2BO,5AO=3CO.
(1)寫出數(shù)軸上點A、C表示的數(shù);
(2)點P、Q分別從A、C同時出發(fā),點P以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,點Q以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,M為線段AP的中點,點N在線段CQ上,且CN=CQ.設運動的時間為t(t>0)秒.
①數(shù)軸上點M、N表示的數(shù)分別是 (用含t的式子表示);
②t為何值時,M、N兩點到原點的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負,單位:km):
①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?
②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?
③若該出租車的計價標準為:行駛路程不超過3km收費10元,超過3km的部分按每千米加1.8元收費,在這過程中該駕駛員共收到車費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究規(guī)律,完成相關題目.
老師說:“我定義了一種新的運算,叫(加乘)運算.”
然后老師寫出了一些按照(加乘)運算的運算法則進行運算的算式:
(+5)(+2)=+7;(-3)(-5)=+8;
(-3)(+4)=-7; (+5)(-6)=-11;
0(+8)=8;(-6)0=6.
小明看了這些算式后說:“我知道老師定義的(加乘)運算的運算法則了.”
聰明的你也明白了嗎?
(1)歸納(加乘)運算的運算法則:
兩數(shù)進行(加乘)運算時,運算法則是什么.
特別地,0和任何數(shù)進行(加乘)運算,或任何數(shù)和0進行(加乘)運算運算法則是什么.
(2)計算:
①()[()].(括號的作用與它在有理數(shù)運算中的作用一致)
② 若()( ).求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某氣象臺發(fā)現(xiàn):在某段時間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時間有( 。
A.9天
B.11天
C.13天
D.22天
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關于x軸的對稱點,P是拋物線上的一點,當△PBH與△AOC相似時,求符合條件的P點的坐標(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當CN的值最大時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生體質,某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第( 。┟
A. 80 B. 105 C. 120 D. 150
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com