【題目】如圖,在△ABC與△DBC中,∠ACB=∠DBC=90°,E是BC的中點(diǎn),EF⊥AB,AB=DE.
(1)求證:BC=DB;
(2)若BD=8cm,求AC的長(zhǎng).
【答案】(1)見解析; (2)4
【解析】
(1)由DE⊥AB,可得∠BFE=90°,由直角三角形兩銳角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形兩銳角互余,可得∠ABC+∠A=90°,根據(jù)同角的余角相等,可得∠A=∠DEB,然后根據(jù)AAS判斷△ABC≌△EDB,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得到BD=BC;
(2)由(1)可知△ABC≌△EDB,根據(jù)全等三角形的對(duì)應(yīng)邊相等,得到AC=BE,由E是BC的中點(diǎn),得到BE=.
(1)∵DE⊥AB,可得∠BFE=90°,
∴∠ABC+∠DEB=90°,
∵∠ACB=90°,
∴∠ABC+∠A=90°,
∴∠A=∠DEB,
在△ABC和△EDB中, ,
∴△ABC≌△EDB(AAS),
∴BD=BC;
(2)∵△ABC≌△EDB,
∴AC=BE,
∵E是BC的中點(diǎn),BD=8cm,
∴BE=cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有四個(gè)分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小明先從口袋里隨機(jī)不放回地取出一個(gè)小球,記下數(shù)字為x;小紅在剩下有三個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字y.
(1)計(jì)算由x、y確定的點(diǎn)(x,y)在函數(shù)y=﹣x+6圖象上的概率;
(2)小明、小紅約定做一個(gè)游戲,其規(guī)則是:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝.這個(gè)游戲規(guī)則公平嗎?說明理由;若不公平,怎樣修改游戲規(guī)則才對(duì)雙方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可): .
(5)小明發(fā)現(xiàn),①該函數(shù)的圖象關(guān)于點(diǎn)( , )成中心對(duì)稱;
②該函數(shù)的圖象與一條垂直于x軸的直線無交點(diǎn),則這條直線為 ;
③直線y=m與該函數(shù)的圖象無交點(diǎn),則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,D為BC上一點(diǎn),且∠DAB=45°.
(1) 求∠DAC的度數(shù).
(2) 求證:△ACD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,AB>BC,點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC,若△ABC的面積為18,則△ABE與△CDF的面積之和是( )
A.6B.8C.9D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:下列結(jié)論:①甲乙兩地相距600 千米;②慢車的速度是60千米/小時(shí);③兩車相距300千米時(shí),x=2;④慢車走400千米時(shí)快車已到達(dá)甲地.其中正確的是___________________ .(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,
(1)求DE的長(zhǎng);
(2)過點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長(zhǎng);
(3)過點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(觀察發(fā)現(xiàn))如圖 1,△ABC 和△CDE 都是等邊三角形,且點(diǎn) B、C、E 在一條直線上,連接 BD 和AE,BD、AE 相交于點(diǎn) P,則線段 BD 與 AE 的數(shù)量關(guān)系是 ,BD 與 AE 相交構(gòu)成的銳角的度數(shù)是 .(只要求寫出結(jié)論,不必說明理由)
(2)(深入探究 1)如圖 2,△ABC 和△CDE 都是等邊三角形,連接 BD 和 AE,BD、AE 相交于點(diǎn) P,猜想線段 BD 與 AE 的數(shù)量關(guān)系,以及 BD 與 AE 相交構(gòu)成的銳角的度數(shù). 請(qǐng)說明理由 結(jié)論:
理由:_______________________
(3)(深入探究 2)如圖 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,連接 AD、BE,Q 為 AD 中點(diǎn),連接 QC 并延長(zhǎng)交 BE 于 K. 求證:QK⊥BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com