【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),AB⊥x軸于點(diǎn)B,cos∠OAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長(zhǎng)AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式;
(2)求直線EB的解析式;
(3)求S△OEB.
【答案】(1)反比例函數(shù)的解析式為y=;(2)直線BE的解式為:y=x﹣2;(3)S△OEB=12.
【解析】(1)利用待定系數(shù)法求反比例函數(shù)的解析式;
(2)根據(jù)點(diǎn)A的坐標(biāo)可求得直線OA的解析式,聯(lián)立直線OA和反比例函數(shù)解析式列方程組可得點(diǎn)E的坐標(biāo),再利用待定系數(shù)法求BE的解析式;
(3)根據(jù)三角形的面積公式計(jì)算即可.
(1)∵A點(diǎn)的坐標(biāo)為(a,6),AB⊥x軸,
∴AB=6,
∵cos∠OAB═,
∴,
∴OA=10,
由勾股定理得:OB=8,
∴A(8,6),
∴D(8,),
∵點(diǎn)D在反比例函數(shù)的圖象上,
∴k=8×=12,
∴反比例函數(shù)的解析式為:y=;
(2)設(shè)直線OA的解析式為:y=bx,
∵A(8,6),
∴8b=6,b=,
∴直線OA的解析式為:y=x,
則,x=±4,
∴E(-4,-3),
設(shè)直線BE的解式為:y=mx+n,
把B(8,0),E(-4,-3)代入得:,
解得:,
∴直線BE的解式為:y=x-2;
(3)S△OEB=OB|yE|=×8×3=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)y=(x>0)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長(zhǎng)CA至點(diǎn)D,使AD=AB,延長(zhǎng)BA至點(diǎn)E,使AE=AC,直線DE分別交x軸,y軸于點(diǎn)P,Q,當(dāng)QE:DP=9:25時(shí),圖中的陰影部分的面積等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的面積為1.分別倍長(zhǎng)(延長(zhǎng)一倍),BC,CA得到.再分別倍長(zhǎng)A1B1,B1C1,C1A1得到.…… 按此規(guī)律,倍長(zhǎng)2018次后得到的 的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RtΔABC中,∠C=90, BC=6cm, AC=8cm,如果按圖中所示方法將ΔBCD沿BD折疊,使點(diǎn)C落在邊AB上的點(diǎn)C'處,那么ΔADC'的周長(zhǎng)是________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中, ,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)分別在邊上,則的值為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,點(diǎn)為中點(diǎn),連接,于,交于,連接,點(diǎn)為中點(diǎn),連接,以下結(jié)論:①;②;③;④平分。其中正確的結(jié)論的序號(hào)為___________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,等腰三角形紙片,AB=AC,∠BAC=30°,按圖2將紙片沿DE折疊,使得點(diǎn)A與點(diǎn)B重合,此時(shí)∠DBC= ;
(2)在(1)的條件下,將△DEB沿直線BD折疊,點(diǎn)E恰好落在線段DC上的點(diǎn)E′處,如圖3,此時(shí)∠E′BC= ;
(3)若另取一張等腰三角形紙片ABC,AB=AC,沿直線DE折疊(點(diǎn)D,E分別為折痕與直線AC,AB的交點(diǎn)),使得點(diǎn)A與點(diǎn)B重合,再將所得圖形沿直線BD折疊,使得E落在點(diǎn)E′的位置,直線BE′與直線AC交于點(diǎn)M.設(shè)∠BAC=m°(m<90°)畫(huà)出折疊后的圖形,并直接寫(xiě)出對(duì)應(yīng)的∠MBC的大小.(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過(guò)菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com