【題目】ABC中,AD平分∠BACBC于點(diǎn)D,在AB上取一點(diǎn)E,使得EA=ED.

1)求證:DEAC;

2)若ED=EBBD=2,EA=3,求AD的長(zhǎng).

【答案】1)見解析(24

【解析】

1)根據(jù)等腰三角形的性質(zhì)即可求解;

2)根據(jù)已知條件得到∠ADB=90°,再利用RtABD中,由勾股定理即可求解.

1)證明:∵AD平分∠BAC,

∴∠1=2.

EA=ED,

∴∠1=3.

∴∠2=3.

DEAC.

2)∵ED=EBED=EA,

∴∠B=4,ED=EB=EA=3.

AB=6.

在△ABD中,∠B+4+3+1=180°,

∵∠1=3,∠B=4,

∴∠B+4+3+1=23+24=180°.

∴∠ADB=3+4=90°.

RtABD中,由勾股定理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)《勾股定理》的學(xué)習(xí),我們知道:如果一個(gè)三角形中,兩邊的平方和等于第三邊的平方,那么這個(gè)三角形一定是直角三角形.如果我們新定義一種三角形——兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

1)根據(jù)奇異三角形的定義,請(qǐng)你判斷:等邊三角形一定是奇異三角形嗎?

(填或不是);

2)若某三角形的三邊長(zhǎng)分別為1、2,則該三角形是不是奇異三角形,請(qǐng)做出判斷并寫出判斷依據(jù);

3)在中,兩邊長(zhǎng)分別為,且且,則這個(gè)三角形是不是奇異三角形?請(qǐng)做出判斷并寫出判斷依據(jù);

探究:Rt中,,且b>a,若Rt是奇異三角形,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,

1)若AE平分∠BACADBC于點(diǎn)D,∠C=74°,∠B=46°,求∠DAE的度數(shù).

2)若AEABC的中線,BC=4,ABE的面積為4,EC=3DE,求ABC面積和ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、34,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、23(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形中,=4, =8,點(diǎn)邊上一點(diǎn),且,點(diǎn)是邊上一動(dòng)點(diǎn),連接,,則下列結(jié)論:① ;②當(dāng)時(shí),平分 ; 周長(zhǎng)的最小值為15 ;④當(dāng)時(shí),平分.其中正確的個(gè)數(shù)有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊ABC如圖放置,A(1,1),B(3,1),等邊三角形的中心是點(diǎn)D,若將點(diǎn)D繞點(diǎn)A旋轉(zhuǎn)90°后得到點(diǎn)D′,則D′的坐標(biāo)( 。

A. (1+,0) B. (1﹣,0)或(1+,2)

C. (1+,0)或(1﹣,2) D. (2+,0)或(2﹣,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)測(cè)試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級(jí)部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下.

成績(jī)/

120﹣111

110﹣101

100﹣91

90以下

成績(jī)等級(jí)

A

B

C

D

請(qǐng)根據(jù)以上信息解答下列問題:

(1)這次統(tǒng)計(jì)共抽取了   名學(xué)生的數(shù)學(xué)成績(jī),補(bǔ)全頻數(shù)分布直方圖;

(2)若該校九年級(jí)有1000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次數(shù)學(xué)成績(jī)?cè)?/span>B等級(jí)以上(含B等級(jí))的學(xué)生有多少人?

(3)根據(jù)學(xué)習(xí)中存在的問題,通過一段時(shí)間的針對(duì)性復(fù)習(xí)與訓(xùn)練,若A等級(jí)學(xué)生數(shù)可提高40%,B等級(jí)學(xué)生數(shù)可提高10%,請(qǐng)估計(jì)經(jīng)過訓(xùn)練后九年級(jí)數(shù)學(xué)成績(jī)?cè)?/span>B等級(jí)以上(含B等級(jí))的學(xué)生可達(dá)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(每小題4分,共16分)

1

2)已知.求代數(shù)式的值.

3)先化簡(jiǎn),再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB=AD∠1=∠2,以下條件中,不能推出△ABC≌△ADE的是( )

A. AE=AC B. ∠B=∠D C. BC=DE D. ∠C=∠E

查看答案和解析>>

同步練習(xí)冊(cè)答案