【題目】將正方形ABCD放在如圖所示的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(4,0),N點(diǎn)的坐標(biāo)為(3,0),MN平行于y軸,E是BC的中點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)C落在MN上,折痕為直線EF.
(1)求點(diǎn)G的坐標(biāo);
(2)求直線EF的解析式;
(3)設(shè)點(diǎn)P為直線EF上一點(diǎn),是否存在這樣的點(diǎn)P,使以P, F, G的三角形是等腰三角形?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)G點(diǎn)的坐標(biāo)為:(3,4-);(2)EF的解析式為:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
【解析】分析:(1)點(diǎn)G的橫坐標(biāo)與點(diǎn)N的橫坐標(biāo)相同,易得EM為BC的一半減去1,為1,EG=CE=2,利用勾股定理可得MG的長度,4減MG的長度即為點(diǎn)G的縱坐標(biāo);
(2)由△EMG的各邊長可得∠MEG的度數(shù)為60°,進(jìn)而可求得∠CEF的度數(shù),利用相應(yīng)的三角函數(shù)可求得CF長,4減去CF長即為點(diǎn)F的縱坐標(biāo),設(shè)出直線解析式,把E,F(xiàn)坐標(biāo)代入即可求得相應(yīng)的解析式;
(3)以點(diǎn)F為圓心,FG為半徑畫弧,交直線EF于兩點(diǎn);以點(diǎn)G為圓心,FG為半徑畫弧,交直線EF于一點(diǎn);做FG的垂直平分線交直線EF于一點(diǎn),根據(jù)線段的長度和與坐標(biāo)軸的夾角可得相應(yīng)坐標(biāo).
詳解:(1)易得EM=1,CE=2,
∵EG=CE=2,
∴MG=,
∴GN=4-;
G點(diǎn)的坐標(biāo)為:(3,4-);
(2)易得∠MEG的度數(shù)為60°,
∵∠CEF=∠FEG,
∴∠CEF=60°,
∴CF=2,
∴OF=4-2,
∴點(diǎn)F(0,4-2).
設(shè)EF的解析式為y=kx+4-2,
易得點(diǎn)E的坐標(biāo)為(2,4),
把點(diǎn)E的坐標(biāo)代入可得k=,
∴EF的解析式為:y=x+4-2.
(3)P1(1,4-)、P2(,7-2),
P3(-,2-1)、P4(3,4+)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王紅有5張寫著以下數(shù)字的卡片,請按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最小,最小值是 .
(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最大,最大值是 .
(3)從中取出除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能用一次,如:23×[1﹣(﹣2)]),請另寫出一種符合要求的運(yùn)算式子 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角邊長為6的等腰直角△AOC放在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C、A分別在x軸,y軸的正半軸上,一條拋物線經(jīng)過點(diǎn)A、C及點(diǎn)B(﹣3,0).
(1)求該拋物線的解析式;
(2)若點(diǎn)P是線段BC上一動(dòng)點(diǎn),過點(diǎn)P作AB的平行線交AC于點(diǎn)E,連接AP,當(dāng)△APE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn),將(1)中的拋物線進(jìn)行平移,平移后,該拋物線只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線y=2x﹣ 上,求此時(shí)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里:+(-2),0,﹣0.314,(兩個(gè)1間的0的個(gè)數(shù)依次多1個(gè))﹣(﹣11),,,,
正有理數(shù)集合:{ …},
無理數(shù)集合: { …},
整數(shù)集合: { …},
分?jǐn)?shù)集合: { …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在5×4的網(wǎng)格中,每個(gè)小正方形的邊長是1個(gè)單位長.
(1)先在圖中將面積是5的一個(gè)長方形分割成5塊,然后再畫出用這5塊拼成的一個(gè)正方形;
(2)設(shè)拼成的正方形的邊長為a個(gè)單位長,
①a是有理數(shù)還是無理數(shù)?
②試在數(shù)軸上將a的相反數(shù)表示出來;
③求出a的近似值(保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.
(1)求證:AE為⊙O的切線;
(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;
(3)在(2)的條件下,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= 的圖形如圖,以下結(jié)論: ①m<0;
②在每個(gè)分支上y隨x的增大而增大;
③若點(diǎn)A(﹣1,a),點(diǎn)B(2,b)在圖象上,則a<b;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖是用棋子擺成的“T”字圖案.從圖案中可以看出,第一個(gè)“T”字圖案需要5枚棋子,第二個(gè)“T”字圖案需要8枚棋子,第三個(gè)“T”字圖案需要11枚棋子
(1)照此規(guī)律,擺成第八個(gè)圖案需要幾枚棋子?
(2)擺成第n個(gè)圖案需要幾枚棋子?
(3)擺成第2008個(gè)圖案需要幾枚棋子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),、滿足||+||=0;
(1)點(diǎn)A表示的數(shù)為_____;點(diǎn)B表示的數(shù)為_____;
(2)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),
①當(dāng)t=1時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.
當(dāng)t=3時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.
②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com