【題目】定義:經(jīng)過三角形的一個(gè)頂點(diǎn)的線段把三角形分成兩個(gè)小三角形,如果其中一個(gè)三角形是等腰三角形,另外一個(gè)三角形和原三角形的三個(gè)內(nèi)角分別相等,那么把這條線段定義為原三角形的“和諧分割線”.例如如圖1:等腰直角三角形斜邊上的中線就是一條“和諧分割線”.
(1)判斷(對(duì)的打“√”,錯(cuò)的打“×”)
①等邊三角形不存在“和諧分割線”
②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,則這個(gè)三角形必存在“和諧分割線”
(2)如圖2,Rt△ABC,∠C=90°,∠B=30°,AC=2,請(qǐng)畫出“和諧分割線”,并計(jì)算“和諧分割線”的長度;
(3)如圖3,線段CD是△ABC的“和諧分割線”,∠A=42°,求∠B的度數(shù).
【答案】(1)√,√;(2);(3)∠B的值為54°或27°或46°或32°.
【解析】
(1)根據(jù)“和諧分割線”的定義即可判斷;
(2)如圖作∠CAB的平分線,只要證明線段AD是“和諧分割線”即可;
(3)分四種情形討論即可;
解:(1)①等邊三角形不存在“和諧分割線”,正確;
②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,則這個(gè)三角形必存在“和諧分割線”,正確,
故答案為:√,√;
(2)如圖作∠CAB的平分線,
∵∠C=90°,∠B=30°,
∴∠DAB=∠B=30°,
∴DA=DB,
∴△ADB是等腰三角形,且△ACD∽△BCA,
∴線段AD是△ABC的“和諧分割線”,
(3)如圖3中,分四種情形:
①當(dāng)AD=DC,△BCD∽△BAC時(shí),可得∠ADC=180°﹣42°﹣42°=96°,∠BCD=∠A=42°,
∵∠ADC=∠BCD+∠B,
∴∠B=54°.
②當(dāng)AC=AD,△BCD∽△BAC時(shí),同法可得∠B=27°.
③當(dāng)DC=DB,△ACD∽△ABC時(shí),可得∠B=46°.
④當(dāng)BC=BD,△ACD∽△ABC時(shí),可得∠B=32°.
綜上所述,滿足條件的∠B的值為54°或27°或46°或32°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx經(jīng)過兩點(diǎn)A(﹣1,1),B(2,2).過點(diǎn)B作BC∥x軸,交拋物線于點(diǎn)C,交y軸于點(diǎn)D.
(1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);
(2)若拋物線上存在點(diǎn)M,使得△BCM的面積為 ,求出點(diǎn)M的坐標(biāo);
(3)連接OA、OB、OC、AC,在坐標(biāo)平面內(nèi),求使得△AOC與△OBN相似(邊OA與邊OB對(duì)應(yīng))的點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對(duì)成績進(jìn)行了統(tǒng)計(jì),繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖.
(1)本次抽測的男生有人,抽測成績的眾數(shù)是;
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),則該校350名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利民商店經(jīng)銷甲、乙兩種商品.現(xiàn)有如下信息:
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)甲、乙兩種商品的進(jìn)貨單價(jià)各多少元?
(2)該商店平均每天賣出甲商品500件和乙商品300件.經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價(jià)分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價(jià)都下降m元.在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為確保信息安全,在傳輸時(shí)往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時(shí),則接收方對(duì)應(yīng)收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,4,5.
(1)當(dāng)發(fā)送方發(fā)出一組密碼為2,3,5時(shí),則接收方收到的密碼是多少?
(2)當(dāng)接收方收到一組密碼2,8,11時(shí),則發(fā)送方發(fā)出的密碼是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( )
A.a>0
B.當(dāng)x>1時(shí),y隨x的增大而增大
C.c<0
D.3是方程ax2+bx+c=0的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是(填①或②),月租費(fèi)是元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求證:GF⊥OC;
(2)求EF的長(結(jié)果精確到0.1m). (參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校部分男生分3組進(jìn)行引體向上訓(xùn)練.對(duì)訓(xùn)練前后的成績進(jìn)行統(tǒng)計(jì)分析,相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下.
(1)求訓(xùn)練后第一組平均成績比訓(xùn)練前增長的百分?jǐn)?shù);
(2)小明在分析了圖表后,聲稱他發(fā)現(xiàn)了一個(gè)錯(cuò)誤:“訓(xùn)練后第二組男生引體向上個(gè)數(shù)沒有變化的人數(shù)占該組人數(shù)的50%,所以第二組的平均成績不可能提高3個(gè)這么多.”你同意小明的觀點(diǎn)嗎?請(qǐng)說明理由;
(3)你認(rèn)為哪一組的訓(xùn)練效果最好?請(qǐng)?zhí)峁┮粋(gè)解釋來支持你的觀點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com